|           | Chapter o Can | thuai Name.                                               |
|-----------|---------------|-----------------------------------------------------------|
| Day       | Date          | Assignment (Due the next class meeting)                   |
| Wednesday | 2/16/22       | 8 Day 1 Notes: Compositions                               |
| Thursday  | 2/17/22       | HW: 8 Day 1 Worksheet                                     |
| Friday    | 2/18/22       | 8 Day 2 Notes: Inverses of Linear and Quadratic Functions |
| Tuesday   | 2/22/22       | HW: 8 Day 2 Worksheet                                     |
| Wednesday | 2/23/22       | 8 Day 3 Notes: Simplifying Radicals                       |
| Thursday  | 2/24/22       | HW: 8 Day 3 Worksheet                                     |
| Friday    | 2/25/22       | 8 Day 4 Notes: Solving Radical Equations                  |
| Monday    | 2/28/22       | HW: 8 Day 4 Worksheet                                     |
| Tuesday   | 3/1/22        | 8 Day 5 Notes: Graphing Square and Cube Root Functions    |
| Wednesday | 3/2/22        | HW: 8 Day 5 Worksheet                                     |
| Thursday  | 3/3/22        | Review Chapter 8                                          |
| Friday    | 3/4/22        | HW: Practice Test                                         |
| Monday    | 3/7/22        | Chapter 8 Extra Review                                    |
| Tuesday   | 3/8/22        | HW: Extra Review                                          |
| Wednesday | 3/9/22        | Ch 8 Test                                                 |
| Thursday  | 3/10/22       |                                                           |

### Chapter 8 Calendar Name: \_\_\_\_\_

- ✤ Be prepared for daily quizzes.
- ★ Every student is expected to do every assignment for the entire unit.
- \* Try <u>www.khanacademy.org</u> or <u>www.mathguy.us</u> if you need help outside of school hours.
- \* Students who complete 100% of the assignments for the semester will receive a 2% bonus.

### **8 Day 1 Notes: Composition of Functions**

Work with a partner to perform the indicated operations given  $f(x) = 2x^2 - x + 11$ , g(x) = 7x - 9, and  $h(x) = -x^2 + 6$ .

a) f(x) + h(x) c) g(x) - f(x)

b)  $g(x) \cdot h(x)$ 

Functional Notation: f(x) =rule

What does the word "composition" mean?

Use the following worked-out examples as a model to help you with the following examples: **Example:** Find f(3) if f(x) = 8x - 1. **Example:** Solve for x if f(x) = 5x - 3 and f(x) = 17.

$$= 8(3) - 1$$
  
= 24 - 1  
so  $f(3) = 23$   
$$17 = 5x - 3$$
  
 $20 = 5x$   
so  $4 = x$ 

Try the following problems with a partner:

Try the following problems with a partner:

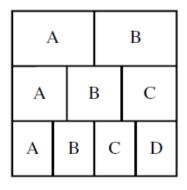
1) Find 
$$g(-2)$$
 if  $g(x) = -7x + 9$ .  
1) Solve for x if  $g(x) = 2x + 9$  and  $g(x) = -33$ 

2) Find 
$$h(5)$$
 if  $h(x) = -2x^2 + 23$ .  
2) Solve for x if  $h(x) = -2x - 3$  and  $h(x) = 6$ 

3) Find 
$$d(-8)$$
 if  $d(x) = \frac{3}{4}x + 6$ .  
3) Solve for x if  $d(x) = x^2 + 7$  and  $d(x) = 32$ 

More examples: If f(x) = 6x + 18, g(x) = 9x - 1, and h(x) = -3x + 7, then find the following compositions.

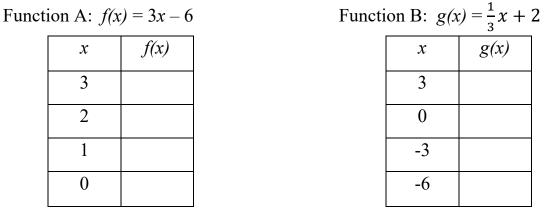
**Example 4:** Find f(g(x)). **Example 5:** Find g(f(x)).


**Example 6:** Find h(g(x)).

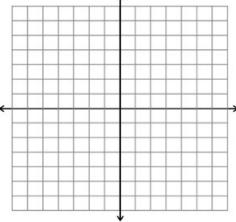
**Example 7:** Find h(h(x)).

**Example 8:** Find *f*(*g*(-6)).

Your notes on composition of functions:


**Example 9:** The square below is divided into 3 rows of equal area. In the top row, the region labeled A has the same area as the region labeled B. In the middle row, the 3 regions have equal areas. In the bottom row, the 4 regions have equal areas. What fraction of the square's area is in a region labeled A?




# 8 Day 2 Notes: Inverses of Linear and Quadratic Functions

What do you think the word "inverse" means in math? Hint: What is the inverse of adding? What is the inverse of dividing?

**Exploration**: Complete the following input/output tables for the given linear functions. What do you notice?

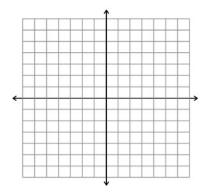


Now graph each function on the coordinate system below. Then draw the line y = x. What do you notice?

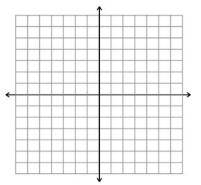


Now find f(g(x)) and g(f(x)). What do you notice?

#### **Properties of Inverse Functions:**

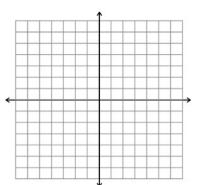

Example 1: Graph the following lines on the same coordinate plane. Are they inverse functions? How do you know?

$$y = 2x + 4$$
 and  $y = -\frac{1}{2}x - 4$ 


How to find the inverse  $(y^{-1})$  of a function:

Examples: Find the inverse of each linear function. Then graph both functions on the same coordinate plane.

2) 
$$y = 4x - 4$$

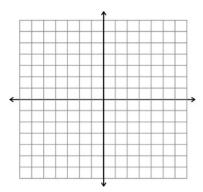



3) 
$$g(x) = \frac{2}{3}x - 4$$



4) Are the following functions inverses? Explain your reasoning. h(x) = 6x - 1 and k(x) = 6x + 1

Now, graph the function  $h(x) = x^2$ 




Switch the input and output values from the graph above and graph the new ordered pairs on the same grid. What did you just graph?

This new graph is not a function. How can you limit the domain of h(x) so that the inverse is also a function?

The inverse of a quadratic function is a \_\_\_\_\_\_ function.

Example 6) Find the inverse of  $f(x) = 4x^2$  if  $x \ge 0$ . Then graph both functions on the same grid.



Example 7) Find the inverse of  $y = x^2 - 8$  if  $x \ge 0$ .

Example 8) Determine if  $f(x) = x^2 + 3$  and  $g(x) = \sqrt{x - 3}$  are inverses if  $x \ge 0$ . Explain.

Example 9) Write a function.

Now, find its inverse.

Finally, is the inverse a function? Explain your reasoning.

## 8 Day 3 Notes: Simplifying Radicals

Work with a partner to simplify  $\sqrt{200}$ .

Now simplify  $\sqrt{27x^7y^2}$ 

What do you think  $\sqrt[3]{}$  means? What about  $\sqrt[4]{}$ ?

*n*<sup>th</sup> root:

index of a radical:

Another way to write a radical is with a rational exponent.

 $\sqrt[n]{x^1} = x^{\frac{1}{n}}$  so we can write  $\sqrt{64}$  as

or  $8^{\frac{1}{3}}$  as

Examples: Simplify. 1)  $50^{\frac{1}{2}}$ 

2)  $(-20x^2y)^{\frac{1}{2}}$ 

3)  $\sqrt[3]{27a^3b^7}$ 

4) 
$$(-32xy^8z^{10})^{\frac{1}{3}}$$

5) 
$$\sqrt[4]{625x^{48}y^{36}z^{72}}$$
 6)  $2\sqrt[3]{-64a^5}$ 

7)  $-3\sqrt[4]{162e^{12x}}$ 

You try these!  
a) 
$$\sqrt[3]{256x^4y^6}$$
b)  $\sqrt[5]{-32a^{20}b^{17}c^9}$ 
c)  $\sqrt[3]{-16a^{13}}$ 

d) 
$$2(32x^7y^9)^{\frac{1}{2}}$$
 e) Create a radical that could be simplified to  $2e^{3x}\sqrt[3]{2e^{2x}}$ 

#### Adding and Subtracting with Radicals

With a partner to simplify  $\sqrt{6} + 3\sqrt{6}$ . Check your answer with a calculator.

We can add or subtract radicals as long as they have the same radicand.

#### **Examples:** Simplify.

8) 
$$3\sqrt{8} - 4\sqrt{2}$$
  
9)  $10\sqrt[3]{y} - 6\sqrt[3]{y}$   
10)  $\sqrt[4]{48} - \sqrt[4]{3}$   
11)  $7\sqrt[3]{2a^5} - a\sqrt[3]{16a^2}$ 

#### You try these!

a) 
$$3\sqrt[3]{8} + \sqrt[3]{108} - 2\sqrt[3]{32}$$
 b)  $7x^5y^{\frac{1}{2}} + 13y^{\frac{1}{2}}x^5$ 

12) As part of a probability experiment, Elliot is to answer 4 multiple-choice questions. For each question, there are 3 possible answers, only 1 of which is correct. If Elliot randomly and independently answers each question, what is the probability that he will answer 4 questions correctly?

# 8 Day 4 Notes: Solving Radical Equations

Examples: Solve the following equations. Check for extraneous solutions.

Step 1:

Step 2:

Step 3:

Work with a partner to solve the following equations for x:

1)  $\sqrt{3x+2} = 3$  2)  $\sqrt{x+6} = \sqrt{2x-3}$ 

**Examples:** Solve the following equations. Check for extraneous solutions. 3)  $\sqrt[3]{12x} = 6$  4)  $2\sqrt{6x - 7} + 14 = 4$ 

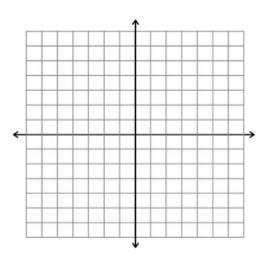
5)  $x - 2 = \sqrt{x + 10}$ 

Check example 5 by graphing it in your graphing calculator. Graph f(x) = x - 2 and  $g(x) = \sqrt{x + 10}$  on the same screen. What do you notice?

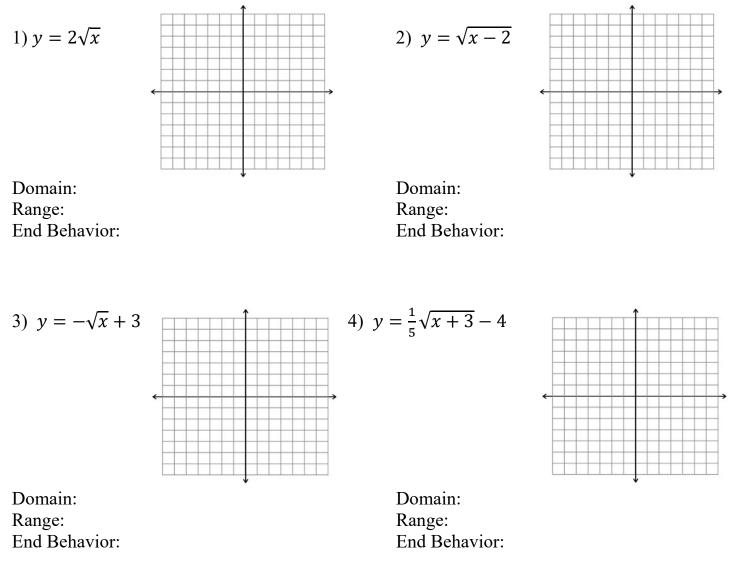
You try! Solve the following equations. Check for extraneous solutions. a)  $\sqrt[3]{x-4}+3=-1$ b)  $\sqrt{x-3}+5=x$ 

### 8 Day 5 Notes: Graphs of Square and Cube Root Functions

Use a table of values to graph the parent radical function:  $y=\sqrt{x}$ 


Identify the following key features:

Endpoint:


Domain:

Range:

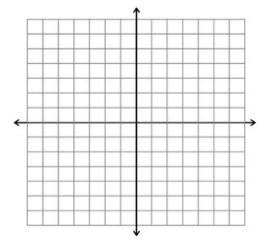
End Behavior:



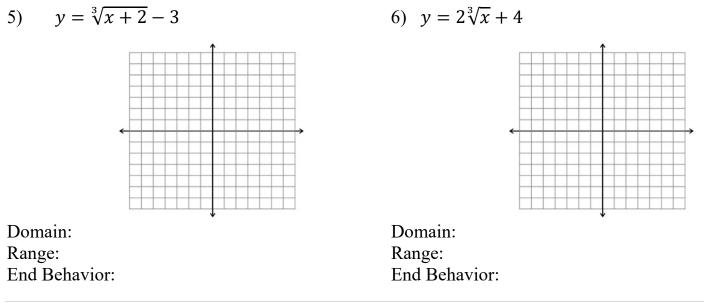
Examples: For each radical function  $y = a\sqrt{x - h} + k$ , describe the transformation from the parent function  $y = \sqrt{x}$ , identify the domain and range, sketch the graph, and identify the end behavior.

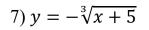


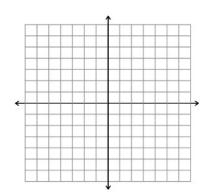
Use a table of values to graph the parent cube root function:  $y = \sqrt[3]{x}$ 

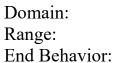

Identify the following key features:

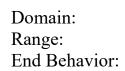
"Center"


Domain:


Range:


End Behavior:

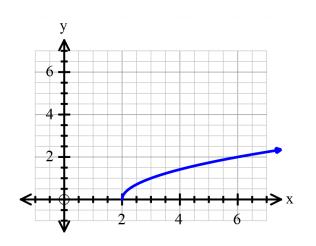




Examples: For each radical function  $y = a\sqrt[3]{x-h} + k$ , describe the transformation from the parent function  $y = \sqrt[3]{x}$ , identify the domain and range, sketch the graph, and identify the end behavior.












8)  $y = 2 + \frac{1}{2}\sqrt[3]{x-3}$ 

**Example 9)** Translate the graph of  $y = \sqrt{x}$  so that it has a range of  $y \ge 3$ .

**Example 10)** Which of the following statements about the graph of f(x) is correct?



A.) f(x) is increasing over the interval (-∞,∞).
B.)f(x) is increasing over the interval [2,∞).
C.)f(x) is decreasing over the interval (-∞,∞).
D.) f(x) is decreasing over the interval [2,∞).