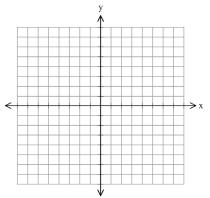
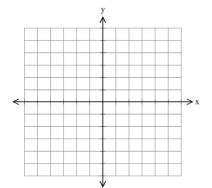
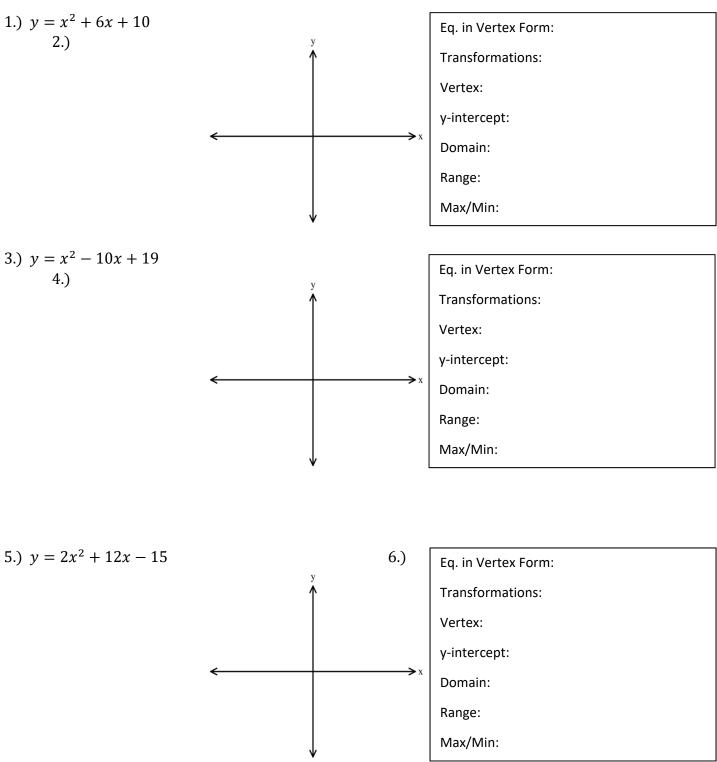

Algebra 2 worksheet 4.1


Name:



19. Graph the piecewise function

$$f(x) = \begin{cases} 2 & x < -3 \\ \frac{2}{3}x - 2 & -3 \le x < 3 \\ |x - 4| & x \ge 3 \end{cases}$$



20. Graph the line $y = \frac{1}{2}(x + 3) + 1$ with its parent function. Then describe how the function is transformed from the parent function

Name:

#1-6, Rewrite the equation in (h, k) form and draw a sketch using the vertex. Then give the requested information.

Simplify.

7. $\sqrt{-4} \cdot \sqrt{-6}$ 8. $\sqrt{-150}$

9.) What is the range of the function = $-x^2 - 18x + 6$?

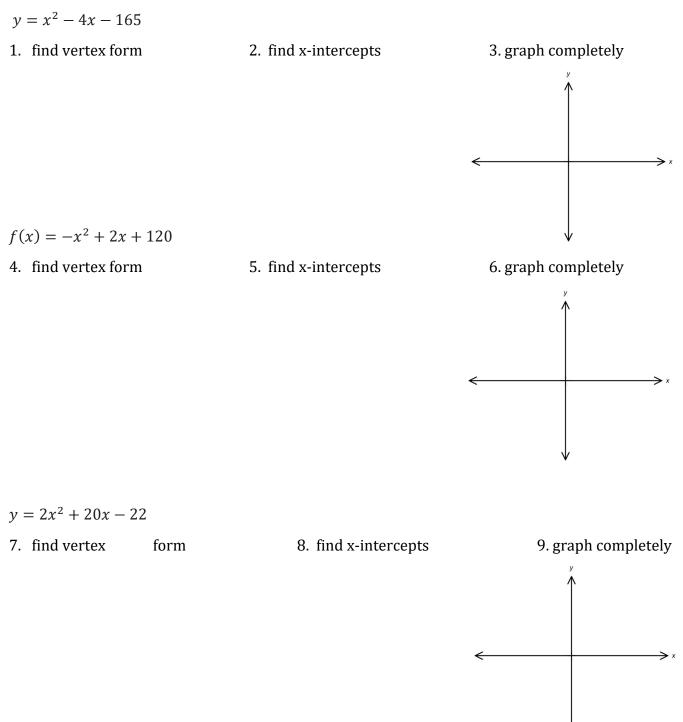
10.) What are the transformations on the function $y = 2x^2 + 4x - 15$

11.) Given f(x) = 3(x - 4) + 1, identify the name of the parent function and describe how the graph is transformed from the parent function.

- A. Quadratic Function with a vertical compression, translated right 4 and up 1
- B. Quadratic Function with a vertical stretch, translated right 4 and up 1
- C. Linear Function with a vertical compression, translated left 4 and up 1
- D. Linear Function with a vertical stretch, translated right 4 and up 1

12.) Rewrite g(x) into vertex form: $g(x) = -2x^2 + 20x + 23$

13.) Given the function, $f(x) = -(x - 4)^2 - 3$, state whether the parabola opens up or down and the maximum or minimum value.


14.) If $(x + 3)(x - 9) = (x - h)^2 + k$, then what is the value of *k*?

A. k = -36 **C.** k = -18

B. k = -27 **D.** k = 9

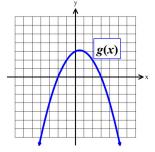
Algebra 2 worksheet 4.3

For 7-15, solve the equation by rewriting in vertex (h, k) form. Sketch a graph and label the vertex and x-intercepts.

10.) What is the y-intercept of the equation in #3?

11.) What is the range of the equation in #6?

Name:_____


12.) The function from #7, $y = 2x^2 + 20x - 22$, is shifted 3 units up and 2 to the left. What is the new equation for *y*?

13.) Translate the graph of $f(x) = x^2$ four (4) units to the left, three (3) units up and stretch the graph by a factor of 2. Which of the following is the function after the transformations?

A.
$$f(x) = \frac{1}{2}(x+4)^2 + 3$$

B. $f(x) = \frac{1}{2}(x-3)^2 - 4$
C. $f(x) = 2(x+4)^2 + 3$
D. $f(x) = 2(x-3)^2 - 4$

14. Do f(x) and g(x) have the same solutions?

$$f(x) = 2x^2 - 4x - 16$$

15. Simplify:
$$\sqrt{-25} \cdot \sqrt{-81}$$

16. Simplify: 3i(6-5i) - 4(2+3i)

17. Simplify: $4x\sqrt{40x^7}$

18. Simplify: $3\sqrt{14} \cdot -3\sqrt{-2}$

19.) List the x-intercepts of $\frac{1}{2}(x+4)^2 - 47 = 3$

Algebra 2 worksheet 4.4

Name:_____

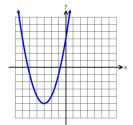
1) What is the maximum or minimum value of $f(x) = x^2 + 8x - 12$?

2) What is the axis of symmetry of the function $f(x) = 2x^2 + 12x + 13$?

3) Translate $y = x^2 + 2x + 1$ four units to the right and 1 unit down. What is the equation of the new function, in vertex form?

4) A parabola has a vertex of (-5, 8) and passes through the point (-7, -4). In the $y = a(x - h)^2 + k$ form of the parabola, what is the value of *a*?

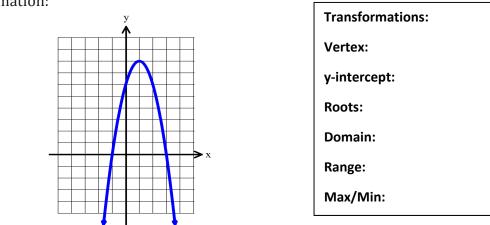
5) A parabola has a vertex of (-3, -21) and passes through the point (-5, 1). In the $y = a(x - h)^2 + k$ form of the parabola, what is the value of *a*?


6) If
$$f(x) = x^2 + 8x - 2 = a(x - h)^2 + k$$
,

then what is the value of k?

7) If $f(x) = x^2 + 10x - 23 = a(x - h)^2 + k$, then what is the value of *h*?

8) Which of the following have the same range as the function graphed? List all that apply!


I. $y = x^{2} + 4x - 1$ II. $y = x^{2} - 4x - 5$ III. $y = -(x - 6)^{2} - 5$ IV. $y = 2(x + 4)^{2} - 5$

9) The graph $f(x) = x^2$ has a vertical compression of by a factor of 1/5 and is shifted down 8. What is the equation of the function after the transformation?

10) Describe in words how the graph of $g(x) = -3(x + 5)^2$ would be transformed from the parent function $f(x) = x^2$.

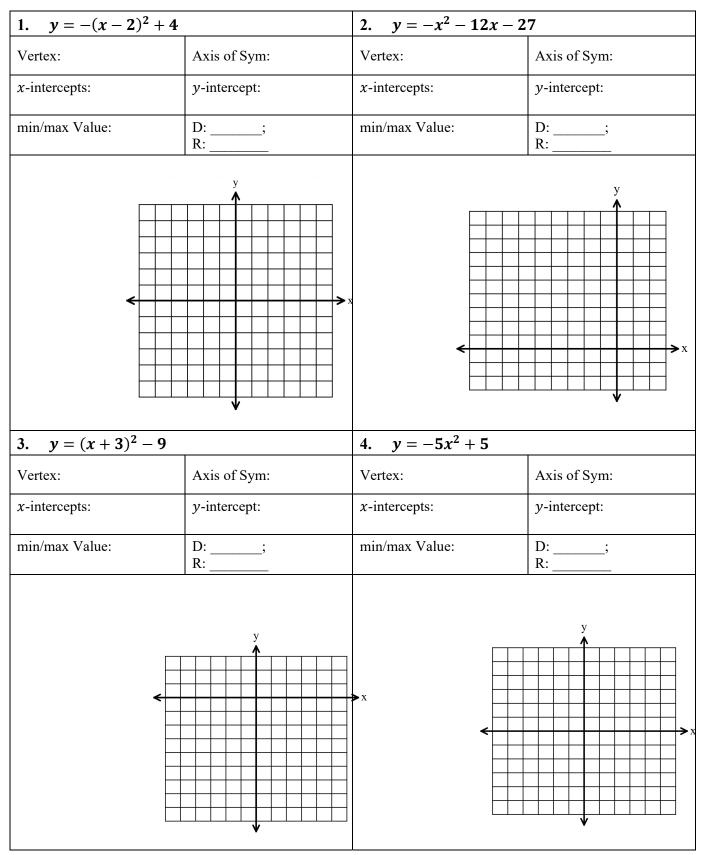
11) Where does the function $f(x) = -3(x + 2)^2 + 10$ cross the y-axis?

12) given the graph of h(x), fill in the requested information:

13. Compare the axis of symmetry and the minimum values for the two functions below.

$$h(x) = 2(x + 3)(x - 7)$$

$$j(x) = x^{2} - 4x - 21$$


Determine which of the following statements is correct.

- **A.** The functions h(x) and j(x) have the same axis of symmetry, but the minimum value of h(x) is less than the minimum value of j(x).
- **B.** The functions h(x) and j(x) have the same axis of symmetry, but the minimum value of h(x) is greater than the minimum value of j(x).
- **C.** The functions h(x) and j(x) do not have the same axis of symmetry, and the minimum value of h(x) is less than the minimum value of j(x).
- **D.** The functions h(x) and j(x) do not have the same axis of symmetry, and the minimum value of h(x) is greater than the minimum value of j(x).

Algebra 2 Unit 4 Practice Test

Name:

For #1-4, graph. Include the vertex, x- & y-intercepts, axis of symmetry, min/max value, & domain & range. Write the domain & range in interval notation

Re-write each equation in vertex form. (Hint: $(\frac{-b}{2a}, f(-\frac{b}{2a}))$), then identify the vertex, domain, range, zeros, axis of symmetry 5. $y = x^2 - 2x - 8$ (Vertex: 6. $f(x) = 3x^2 + 12x - 6$

Vertex:
Domain:
Range:
Axis of Symmetry
Zeros:

6.
$$f(x) = 3x^2 + 12x - 9$$

Vertex:

Domain:

Range:

Axis of Symmetry

Zeros:

7. $y = x^2 + 10x - 4$

Vertex: Domain: Range: Axis of Symmetry Zeros:

8. $y = -x^2 - 14x - 53$

Vertex:
Domain:
Range:
Axis of Symmetry
Zeros:

9. The graph of $h(x) = -x^2 + 10x + 16$ models the height, in feet, of one of the arches at the entrance of a parking structure. What is the height of the parking structure, at the highest point of the arch?

10. Which of following functions does NOT represent the parabola with a vertex at (1, 4) and *x*-intercepts (-1, 0) and (3, 0).

A. $f(x) = -x^2 + x + 4$ B. $f(x) = -(x - 1)^2 + 4$ C. $f(x) = -x^2 + 2x + 3$ D. $f(x) = -(x^2 - 2x - 3)$

- 11. Given the function, $f(x) = x^2 + 10x + 23$, state whether the parabola opens up or down and the maximum or minimum value.
- 12. Compare the functions, f(x) and g(x), and explain how the graph of $f(x) = x^2 4x + 4$ is related to the graph of $g(x) = x^2 4x 2$.
 - A. f(x) is vertically stretched to make g(x)
 - B. f(x) is translated 6 units left to make g(x)
 - C. f(x) is translated down 6 units to make g(x)
 - D. f(x) is compressed vertically to make g(x)
- 13. A parabola has a vertex of (5, 6) and passes through the point (10, -4). In the $y = a(x h)^2 + k$ form of the parabola, what is the value of a?

14. The graph $f(x) = x^2$ has a vertical compression of by a factor of $\frac{1}{2}$, is shifted up 6, and right 5. What is the equation of the function after the transformation?

15. Describe in words how the graph of $g(x) = -5(x+2)^2 - 3$ would be transformed from the parent function $f(x) = x^2$.

16. Where does the function $f(x) = -\frac{1}{2}(x+4)^2 - 3$ cross the y-axis?

17. A parabola has a vertex of (-2, 10) and passes through the point (-3, 6). In the $y = a(x - h)^2 + k$ form of the parabola, what is the value of *a*?

18. If $f(x) = x^2 + 12x + 41 = a(x - h)^2 + k$, then what is the value of *k*? 19. If $f(x) = x^2 - 14x + 39 = a(x - h)^2 + k$, then what is the value of *h*?

20. The graph of $h(x) = -x^2 + 22x - 40$ models the height of one of the arches under a bridge, in feet.

a) What is the maximum height of the arch?

b) How wide is the arch?