19.11 white text

Probability and Statistics

7.1: Correlation

Unit 7 Guided Notes

This chapter talks about relationships between variables that are measured on the same individuals.

Terms to know:

- 1. Response variable: (y) The <u>dependent</u> variable in the study that measures the outcomes.
- 2. Explanatory variable: (x) The <u>independent</u> variable that influences change in the response variable.

Example 1: For each situation, decide which variable is the explanatory and which is the response.

a) Number of hours studying for an exam and the grade on the exam.

mber of hours studying for an exam and the grade on the exam.

> explanatory (indep, x)

> response (dep-yy)

b) The amount of saturated fat in a person's diet and that person's weight.

Gx: expl. (indep.)

Gy: response (dgs)

c) The yield of a crop and the amount of yearly rainfall.

S response (dep, y)

Gexpl. (indep, x)

When examining the relationship of variables, use the following principles:

- Plot the data (and find numerical summaries)
- Look for overall patterns and deviations from these patterns
- If the pattern is regular, use a mathematical model to describe it.

To display the relationship between two quantitative variables, use a <u>Scatterplot</u>

- Put the explanatory variable on the x-axis.
- Put the response variable on the y-axis.
- If the relationship cannot be determined, you may choose which variable goes where.

Example 2: Create a scatter plot of the data shown.

					smare up
X	1	2	3	7	
У	4	5	7	10	

patterns? could you put a line thru it to hit close to most?

as x incr., y incr.

On the calculator...

Keystroke	Comments
STAT, EDIT	Put in L1 and L2
2 nd STATPLOT	Make sure the plot is ON
Choose the scatter plot icon	
ZOOM 9	To fit your data

Types of Correlation:

Asx incl y tends to decr. Linear Correlation

The pattern between x and y does not look like a Straight line.

There is no relationship, Apattern, trend between the x and y values between the x and y values.

and _______ of linear relationships between 2 quantitative variables.

$$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

where x_i and y_i are individual values, n is the # of individuals

(Note: we are using s to describe standard deviation because we are not using a population distribution, but are instead using sample data.)

Do you see the similarity with the standardization process for finding z-scores?

r is the AVERAGE of the products of the x and y standardized values.

Important facts about the correlation coefficient (r):

- 1. r will not change if we switch χ and χ
- 2. Both variables must be quantitative (duh!)
- 3. $-1 \le r \le 1$ (always!)
- 4. If r = 1 or r = -1, then the relationship is perfectly linear.
- 5. Value of r = 0 means there is ______ linear relationship (not the best description of form).
- 6. The correlation coefficient r only measures the strength of a <u>linear</u> relationship.

Example 3: Find the correlation coefficient (r):

X	1	2	3	7
У	4	5	7	10

Jse TI-83: **IMPORTANT:** To calculate r, you must first turn on the *DiagnosticOn* command found in the Catalog menu.

TI-83/84

Keystroke	Comments
STAT, EDIT	To put in L1 and L2
2nd CATALOG	Scroll down to DiagnosticOn
ENTER, ENTER	Your screen should say "DONE"
	You only need to do this once (unless your
	(calculator is reset.)
STAT, CALC, 4: LinReg (ax + b)	The value of r is the 4 th one down.
ziii, ciize, ii ziiiteg (ax i b)	The value of 1 is the 4 one down.

G"linear regression line" +> next lesson

a) What is the value of r?

b) Make a conclusion about the type of correlation.

str. pos, corr.

close to 1

Example 4: Match the value of r to each scatter plot. Choices for r: -1, -.8, 0, 0.8, 1

a) display the data in a scatter plot on your calc; b) find the value of r; c) make a conclusion about the type of correlation.

The number of hours 13 students spent studying for a test and their scores on the test.

Hours, x	0	1	2	4	4	5	5	5	6	6	7	7	8
Score, y	40	41	51	48	64	70	73	75	68	93	84	90	95

b) r=0.923 c) str. pos. corr.

7.2: Regression Lines

straight (not connect the points)
line that describes how a response variable A regression line is a changes as an explanatory variable changes. We can use a regression line to the value of y for a given value of x (or to predict a value of x when given a value for y.)

Residual (d)

• The difference between the observed y-value and the predicted y-value for a given x-value on the line.

Residual: observed value – predicted value

Sometimes neg.

Example 1: Use the scatter plot and regression line shown to estimate the residual for x = 6.

residual: observed - predicted
≈ 4 - 5.6
≈ -1.6

Because different people draw different regression lines through data that appears to be linear, we will use a **least squares regression line** to make the sum of the squares of the residuals of the data points as small as possible.

The equation of a least squares regression line will be written as $\widehat{y} = ax + b$

with slope
$$a = r \frac{s_y}{s_x}$$
 and y-intercept $b = \overline{y} - a\overline{x}$

(Note: \hat{y} is read "y hat")

$$\rightarrow$$
 regr. line passes thru (\bar{x}, \bar{y})

Example 2: We will usually use our TI-83s to calculate $\hat{\mathcal{Y}}$. This time we will calculate it by hand:

X	1	2	3	7
V	4	5	7	10

- Step 1: Make a scatterplot using your TI-83.
- Step 2: Verify that the pattern is linear.
- Step 3: Find r. (We did this in the 7.1 notes.)
- Step 4: Find $\hat{\mathcal{Y}}$ using the formula on the previous page.

r= .98

$$\hat{y} = ax + b$$

$$5x = 2.63$$

 $5y = []$?

Example 3: Now use your TI-83 to find the least squares

egression line. y=ax+b

X	1	2	3	7
V	4	5	7	10

TI-83/84

Keystroke	Comments
STAT, EDIT	Put in your data for L ₁ and
	L_2
STAT	
CALC	
4: $LinReg(ax + b)$	a = slope, b = y-intercept

a = .98795 = .99 $b = 3.28915 \approx 3.29$

Write down the equation here:

$$\hat{y} = .99 \times + 3.29$$

Graph this line as y_1 in your TI-83.

Facts about least-squares regression

- 1. Deciding which variable is independent and which is dependent is essential. You will get a different equation if these are exchanged.
- 2. There is a close connection between the slope of the regression line and r.
- 3. The line will always pass through the point (\bar{x}, \bar{y}) .
- 4. The square of the correlation, r^2 , is the fraction of the variation in the values of y that is explained by the least squared regression line. In other words, r^2 tells us the of the data that fits the line well.

What does r^2 tell us in Example 3?

Example 4. Use the data shown

Advertising expenses, (\$1000), x	Company sales (\$1000), y
2.4	225
1.6	184
2.0	220
2.6	240
1.4	180
1.6	184
2.0	186
2.2	215

a = 50.7287

a) Find the equation of the regression line.

$$y = 50.73x + 104.06$$

b) Use your regression line to predict the sales when the

c) Use your regression line to predict the amount of advertising money spent when the sales are equal to \$200,000. \longrightarrow y = 200

$$\frac{1}{9} = 50.73 \times + 104.06$$

$$200 = 50.73 \times + 104.06$$

$$-104.06$$

$$-104.06$$

$$95.4 = 50.73 \times$$

 $\chi = 1.88 \rightarrow 31,880$

Example 5: A collection of a set of data (x) has a mean 12 with a standard deviation of 1.3. Another variable (y) has a mean of 30 with a standard deviation of 4. The correlation coefficient is 0.91. Find the equation of the linear regression line.

Int is 0.91. Find the equation of the linear regression line.

$$a = r \frac{s_y}{s_x} \qquad b = \overline{y} - a\overline{x}$$

$$a = (.91) \frac{4}{1.3} \qquad b = 30 - 2.8(12)$$

$$a = 2.8 \qquad b = -3.6$$

$$y = ax + b$$

 $y = 2.8x - 3.6$

White text

7.3 Notes: Confidence Intervals for the Mean (Large Samples)

Objectives:

- Can you find a point estimate and a margin of error?
- Can you construct and interpret confidence intervals for the population mean?
- Can you determine the minimum sample size required when estimating μ ?

Essential Idea: Can we estimate the value of the population mean by using sample data?

> but based on sample Point Estimate

A single value estimate for a population parameter

Most unbiased point estimate of the population mean μ is the $\underline{\underline{Sample}}$ $\underline{\underline{mean}}$ $\underline{\bar{x}}$.

Example 1: Market researchers use the number of sentences per advertisement as a measure of readability for magazine advertisements. The following represents a random sample of the number of sentences found in 50 advertisements. Find a point estimate of the population mean, µ. (Source: Journal of Advertising Research)

9 20 18 16 9 9 11 13 22 16 5 18 6 6 5 12 25 17 23 7 10 9 10 10 5 11 18 18 9 9 17 13 11 7 14 6 11 12 11 6 12 14 11 9 18 12 12 17 11 20

The point estimate for the mean length of all magazine advertisements is 12.4 sentences.

Co not possible (decimal)

What would the probability be that the population mean is exactly the same as the point

estimate? Therefore, we will estimate that μ lies in an interval. [12, 13] [11,14] [10,15] How confident do we want to be that the interval estimate contains the population mean μ ?

Level of confidence c: The probability that the interval estimate contains the population parameter.

Critical values

Example 2: Find the critical values z_c for the following confidence levels.

c = 90 0, c = 97% -2(1-.9) 0, c = 97% 0, c = 97

Sampling error: The difference between the $x = \mu$ (varies from sample to sample) $x = \mu$ (varies from sample has diff, $x = \mu$). Mayor of which is usually unknown.	sample mean
- (> u is usually unknown	
Margin of error The greatest possible distance between	en the point estimate and the
population mean for a given level of confidence,	c.
• Denoted by <i>E</i> .	\longrightarrow When $n \ge 30$, the sample
$E = z_c \sigma_{\overline{x}} = z_c \frac{\sigma}{\sqrt{n}}$	\rightarrow standard deviation, s, can
$L = L_c O_{\overline{X}} = L_c \sqrt{n}$	be used for σ .
V 152	
Example 3: Use the magazine advertisement data and a	95% confidence level to find the margin of error for
the mean number of sentences in all magazine advertises 5.0. (Recall that $\bar{x} = 12.4.$)	
	2-score = 1.96 1=50 ≥ 30 √ nor.
E=Zc·5n >5	7,95
E= 1.96 · 5.0	
V30	-1.96 1.96
F 2 1.4	-1.96 1.96 -Ze Ze
E 2 1.4 You are 95% confident	-te te
F = 1.4 You are 95% confident	-1.96 -te terror is ~1.4 Sede
A c -confidence interval for the population mean μ :	that margin of error is ~1.4 sexte
	-te te
A c-confidence interval for the population mean μ :	that margin of error is ~ 1.9 sets that the confidence interval contains μ is c .
A c-confidence interval for the population mean μ :	that margin of error is ~ 1.9 sets that the confidence interval contains μ is c .
A c -confidence interval for the population mean μ :	that margin of error is ~ 1.9 sets that the confidence interval contains μ is c .
A c-confidence interval for the population mean μ : The c-confidence interval: $\overline{x} - E < \mu$	that margin of error is ~ 1.9 seete that the confidence interval contains μ is c .
A c-confidence interval for the population mean μ : The c-confidence interval: $\overline{x} - E < \mu$ Example 4: Construct a 95% confidence interval for the advertisements. See #3 for E .	that margin of error is ~ 1.9 sete that the confidence interval contains μ is c . The where $E = z_c \frac{\sigma}{\sqrt{n}}$ The mean number of sentences in all magazine
A c-confidence interval for the population mean μ : The c-confidence interval: $\overline{x} - E < \mu$ Example 4: Construct a 95% confidence interval for the advertisements. See #3 for E .	that margin of error is ~ 1.9 Seede _ that the confidence interval contains μ is c . where $E = z_c \frac{\sigma}{\sqrt{n}}$ The mean number of sentences in all magazine $= \sqrt{x} + E$ $= \sqrt{x} + E$ $= \sqrt{x} + E$ $= \sqrt{x} + E$
A c-confidence interval for the population mean μ : The c-confidence interval: $\overline{x} - E < \mu$ Example 4: Construct a 95% confidence interval for the advertisements. See #3 for E . $\overline{X} - E < \mu$ $\overline{X} - E < \mu$	that margin of error is ~ 1.4 Seete that the confidence interval contains μ is c . The energy of error is ~ 1.4 See the sequence of the error is ~ 1.4 The energy of error is ~ 1.4 The energy of error is ~ 1.4 The energy of error is ~ 1.4 The error is ~ 1.4 Th
A c-confidence interval for the population mean μ : The c-confidence interval: $\overline{x} - E < \mu$ Example 4: Construct a 95% confidence interval for the advertisements. See #3 for E .	that margin of error is ~ 1.4 Seete that the confidence interval contains μ is c . The energy of error is ~ 1.4 See the sequence of the error is ~ 1.4 The energy of error is ~ 1.4 The energy of error is ~ 1.4 The energy of error is ~ 1.4 The error is ~ 1.4 Th

With 95% confidence, you can say that the population mean μ number of sentences is between _____ and _____.

Example 5: A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 20 students, the mean age is found to be 22.9 years. From past studies, the standard deviation is known to be 1.5 years, and the population is normally distributed. Construct a 90% confidence interval of the population mean age.

al of the population mean age.

$$N=20$$
 $E=Z_{c}(\frac{5}{10})$
 $\overline{\chi}=22.9$ $E=\pm 1.69(\frac{1.5}{120})$
 $C=1.5$ $E=0.5500 \approx 0.6$

22.9 - 0.66U 4 22.9 + .6 22.3 4u < 23.5

**When rounding, round off to the same number of decimal places given for the sample mean. **

Interpreting Results for Confidence Intervals:

- μ is a fixed number. It is either in the confidence interval or not.
- Incorrect: "There is a 90% probability that the actual mean is in the interval (223, 23.5)."

 Correct: "If a large number of samples is collected and a confidence interval is created for each sample, approximately 90% of these intervals will contain μ.

Using a graphing calculator to find a confidence interval:

- 1. STAT, EDIT (put in the list if actual data is given)
- 2. STAT: TESTS
- 3. 7: Z-Interval
- 4. Select <u>Data</u> (if you have entered the actual data) OR select <u>Stats</u> if you entered descriptive statistics.
 - 5. Enter the appropriate values (if needed), and select CALCULATE.

Example 6: Find the 95% confidence interval of the population mean from the following sample:

9 20 18 16 9 9 11 13 22 16 5 18 6 6 5 \times from cake 5.77 \times \times =12.2 \times 57A.

Example 7: A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 20 students, the mean age is found to be 22.9 years. From past studies, the standard deviation is known to be 1.5 years, and the population is normally distributed. Construct a 90% confidence interval of the population mean age.

Finding the minimum sample size:

population mean μ is

 $n = \left(\frac{z_c \sigma}{F}\right)^2$

(ALWAYS ROUND ______!)

If σ is unknown, you can estimate it using s provided you have a preliminary sample with at least 30 members.

Example 8: You want to estimate the mean number of sentences in a magazine advertisement. How many magazine advertisements must be included in the sample if you want to be 95% confident that the sample mean is within one sentence of the population mean? Assume the sample standard deviation is about 5.0.

$$7e^{2} = \pm 1.96$$
 $E = 1$
 $5 = 5.0$
 $n = (1)$

T6.2 White text

7.4 Notes: Confidence Intervals of the Mean (Small Samples)

Objectives:

Can you interpret the *t*-distribution and use a *t*-distribution table?

Can you construct confidence intervals when n < 30, the population is normally distributed, and σ is unknown?

The t-distribution: When the population standard deviation is UNKNOW1, the sample size is less than , and the random variable x is approximately normally distributed, it follows a t-distribution.

Critical values of
$$t$$
 are denoted by t_c .
$$t = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

The tails in the tdistribution are "thicker" than those in the standard normal distribution.

	· · · · · · · · · · · · · · · · · · ·		P. 325 Wm. Gosset
Prope 1.	rties of <i>t</i> -distributions: The <i>t</i> -distribution is	t-shaped and	Symmetric about the mean.
2.	The <i>t</i> -distribution is a family The degrees of freedom are	of curves, each determ the number of <u>free</u> cho t-distribution to estimat	nined by a parameter called the degrees of freedom. oices left after a sample statistic such as <u>y</u> is te a population mean, the degrees of freedom are
	d.f. = n - 1 Degree	es of freedom	df.=3.
3.	The total area under a t-curv	e is 1 or 100%. Af = 3	df=10
4.	The mean, median, and mod	e of the <i>t</i> -distribution ar	re equal to Zeto - true for standar
5.	As the degrees of freedom in the <i>t</i> -distribution is very clos		n approaches the normal distribution. After 30 d.f., al z-distribution.
xam	ple.1: Find the critical value	t _c for a 95% confidence	when the sample size is 15, Use Table 5.
	Table 5: t-Distribution	Party of Nathan	G/N=15) => (d.f.=n-1=14)
	Level of confidence, c 0.50 One tail, cr 0.25	0.80 0.90 0.95 0.98 0.99 0.10 0.05 0.025 0.01 0.005	Draw a diagram of what this means:
	d.f. Two talls, α 0.50 1 1.000 2 .616	0.20 0.10 0.05 0.02 0.01 3.078 6.314 12.706 31.821 63.657 1.886 2.920 4.303 6.965 9.925	95 So 95% of
	ade de la proposition de la companya	1.638 2353 3.182 4541 5.841	area unde
	13 694 14 692 15 691	1.345 1.761 2.145 2.624 2.977 1.341 1.753 2.131 2.602 2.947	t-distr. cur
	16 .690	1.337 1.746 2.120 2.583 2.921	for 14 d.f.
	29 683 20 674	1.311 1.699 2.045 2.462 2.756 1.282 1.645 1.960 2.326 2.576	lies botw
	t	c = 2.145	-2.145 0 2.145 (£= ± 2.195
c-co	onfidence interval for the pop	pulation mean μ : \bar{x}	$-E < \mu < \overline{x} + E$ where $E = t_c \frac{s}{\sqrt{n}}$
	The	that the confidence into	
	(Very similar to constructing		
	1	1=16] => TOF	3 = n - 1 = 15
xam	ple 2: You randomly select 1	6 coffee shops and meas	sure the temperature of the coffee sold at each. The
mple	e mean temperature is 162.0°F	with a sample standard	deviation of 10.0°F. Find the 95% confidence
terva	al for the mean temperature. A	ssume the temperatures	are approximately normally distributed. $\sqrt{1} = 1/(1.2)$
1	Note: Should we use a t-dist	ribution or a normal dist	tribution?
1	31	<30, 0 15 UNK	ENOWN, E. Offrox. Normax
Ta	ble: [te= 2.131)	E=to 5	X - E < u < x + E
		10	are approximately normally distributed. $\overline{\chi} = 162.0 S = 10.0$ tribution? $\overline{\chi} - E < u < \overline{\chi} + E$ $162.0 - 5.3 < u < 162.0 + 5.3$ $156.7 < u < 167.3$
	Park Manager and State and West	= 2.131 , 516	156.7 < u < 167.3
		\$5.3	V-1 -

With 95% confidence, you can say that the mean temperature of coffee sold is between 154.7 and 167.3 15

We only have that one TIN' table let's use calc.
Using the graphing calculator to find the confidence interval with a t-distribution:
 STAT, EDIT, enter list (if the actual data is given) STAT: TESTS 8: TInterval Select Data (if you have entered the original data) OR select Stats if you entered descriptive statistics. Enter the appropriate values
STATS: $n=16$ $\overline{X}=162.0$ $S=10.0$
Example 3: You randomly select 16 coffee shops and measure the temperature of the coffee sold at each. The sample mean temperature is 162.0°F with a sample standard deviation of 10.0°F. Find the 95% confidence interval for the mean temperature. Assume the temperatures are approximately normally distributed.
SKIP XI. STAT (EDIT) . Interval:
7 2. STAT → TESTS (156.67, 167.33) 8 50 50 50 50 50 50 50 50 50 50 50 50 50
Y. select STATS S. Enter X, S, V (C=95) Example 4: A random sample of the body temperature of 9 adults is taken (in degrees F). The results are
below. Find the 98% confidence interval for the population mean body temperature. Assume the temperatures
99 99.2 98.4 97.8 98.3 99.2 100.1 97.4 98.6 calc
find 18=0
(98.0, 99.3)
Example 5: You randomly select 25 newly constructed houses) The sample mean construction cost is \$181,000 and the population standard deviation is known to be \$28,000. Assuming construction costs are normally distributed, should you use the normal distribution, the <i>t</i> -distribution, or neither to construct a 95% confidence interval for the population mean construction cost?
n=25 normal distr? / t-distr.? [Neither?
n=25 $X = 181,000$
6 = 28,000
Le so use morned distr