Assignments for Prob/Stat/Discrete Unit 4: Chapter 2 Descriptive Statistics

	Assignment (Due the next class meeting)
	4.1 Worksheet
	4.2 Worksheet

NOTE: You should be prepared for daily quizzes.

HW reminders:

- ▶ If you cannot solve a problem, get help **before** the assignment is due.
- > Help is available before school or during lunch.
- For extra practice, visit <u>www.interactmath.com</u>
- Click ENTER, then scroll down to Larson, Elementary Statistics 4th edition. Pick the assignment you need extra practice with. You can get immediate feedback and hints.
- > Don't forget that you can get 24-hour math help from <u>www.smarthinking.com</u>!

Section 4.1, Frequency Distributions and Their Graphs

Section 4.1 Part I Objectives

- Can you construct and interpret frequency distributions?
- Can you calculate midpoints and frequencies?
- Can you explain in words the difference between a relative frequency and a cumulative frequency?
- Can you construct and interpret frequency histograms?
- Can you construct and interpret frequency polygons?

Frequency Distribution

- A table that shows ______ or _____ of data with a count of the number of entries in each class.
- The _____, *f*, of a class is the number of data entries in the class.

Class Width 6=1=5

Class		Frequency, f	
1-	5	5	
6-	10	8	
11-	15	6	
16	20	8	
21-	25	5	
26	30	4	
Upper Class Limits			
Lower Class Limits			

Constructing a Frequency Distribution

- 1. Decide on the _____ of classes.
- Usually between 5 and 20; otherwise, it may be difficult to detect any
- 2. Find the class _____.
- Determine the range of the data.
- _____ the range by the number of classes.
- Round up to the next convenient number.

- 3. Find the class limits.
 - You can use the ______ data entry as the lower limit of the first class.
 - Find the remaining lower limits (______ the class width to the lower limit of the next class).
 - Find the ______ limit of the first class. Remember that classes cannot overlap (look at the lower limit of the next class to help.)
 - Find the remaining upper class limits.
- 4. Make a ______ mark for each data entry in the row of the appropriate class.
- 5. Count the tally marks to find the total ______ *f* for each class.

Example: Constructing a Frequency Distribution

The following sample data set lists the number of minutes 50 Internet subscribers spent on the Internet during their most recent session. Construct a frequency distribution that has seven classes.

50 40 41 7 11 7 22 44 28 21 19 23 37 51 54 42 86

41 78 56 72 56 17 7 69 30 80 56 29 33 46 31 39 20

18 29 34 59 73 77 36 39 30 62 54 67 39 31 53 44

- 1. Number of classes = _____
- 2. Find the class width _____ Round up to _____

3 Use (minimum value) as first lower limit Add the class	Lower Limit	Upper Limit
width of the get the lower limit of the next class		
which of to get the lower limit of the next class.		
7 + =		
Find the remaining lower limits by adding		
each time. Class Width =		

The upper limit of the first class is (one	
less than the lower limit of the second class).	Lower Limit
Add the class width of to get the upper	
limit of the next class.	

		Class Width
Lower	Upper	=
Limit	Limit	

Find the remaining upper limits by adding

_.

- 4. Make a tally mark for each data entry in the row of the appropriate class.
- 5. Count the tally marks to find the total frequency f for each class

	Class	Tally	Frequency, f	
	7 - 18			
	19 – 30			
	31-42			
	43 – 54			
	55 - 66			
	67 – 78			
	79 – 90			Σ <i>f</i> = 50
What :	is that symbol a	at the bottom	of the chart?	ſ
				1

 Σ is the Greek letter _____, and it means the "_____" .

So Σ*f* means the "______."

Determining the Midpoint:

Midpoint of a class: the point in the ______ of a class.

(Lower class limit) + (Upper class limit)

2

Class	Midpoint	Frequency, f
7-18		6
19-30		10
31-42	1	13

Class Width=12

Determining the Relative Frequency

Relative Frequency of a class

• Portion or ______ of the data that falls in a particular class.

relative frequency = $\frac{f}{\text{Sample size}} = \frac{f}{n}$

Class	Frequency, f	Relative frequency
7-18	6	
19-30	10	
31-42	13	

Cumulative frequency of a class

The ______ of the frequency for that class

and all ______ classes.

Class	Frequency, f	Cumulative frequency
7-18	6	6
19-30	+ 10	~
31-42	+ 13	▶

Expanded Frequency Distribution

Class	Frequency, f	Midpoint	Relative Frequency	Cumulative Frequency
7 - 18	6	12.5	0.12	6
19-30	10	24.5	0.20	16
31-42	13	36.5	0.26	29
43 - 54	8	48.5	0.16	37
55 - 66	5	60.5	0.10	42
67 - 78	6	72.5	0.12	48
79 - 90	2	84.5	0.04	50

$$\sum f = 50$$
$$\sum \frac{f}{n} = 1$$

Graphs of Frequency Distributions Frequency Histogram

- A _____ graph that represents the frequency distribution.
- The ______scale is quantitative and measures the data values.
- The vertical scale measures the ______ of the classes.

Class Boundaries

- The numbers that separate classes without forming ______ between them •
- The distance from the upper limit of the first class to the lower limit of the second class is 19 18 = 1. •
- this distance is 0.5. ٠
- First class lower boundary = 7 0.5 = 6.5•
- First class upper boundary = 18 + 0.5 = 18.5•

Class	Class Boundaries	Frequency, f
7 - 18	6.5-18.5	6
<u>19</u> – 30		10
31-42		13

Class Boundaries

Class	Class Boundaries	Frequency, f
7 - 18	6.5 - 18.5	6
19 – 30		10
31 - 42		13
43 - 54		8
55 - 66		5
67 - 78		6
79 – 90		2

Example: Frequency Histogram

Construct a frequency histogram for the Internet usage frequency distribution.

Class	Class Boundaries	Midpoint	Frequency, <i>f</i>
7 - 18	6.5 - 18.5	12.5	6
19 – 30	18.5 - 30.5	24.5	10
31-42	30.5 - 42.5	36.5	13
43 - 54	42.5 - 54.5	48.5	8
55-66	54.5 - 66.5	60.5	5
67 – 78	66.5 - 78.5	72.5	6
79 – 90	78.5 - 90.5	84.5	2

Solution: Frequency Histogram (using Midpoints)

Solution: Frequency Histogram (using class boundaries)

Example: Interpreting frequency histograms

- 1. How many classes? 2. What is the class width?
- 3. What is the frequency of the class with the greatest frequency?
- 4. Find Σf . 5. Describe any patterns.

Graphs of Frequency Distributions Frequency Polygon

• A line graph that emphasizes the continuous ______ in frequencies.

Example: Frequency Polygon

Construct a frequency polygon for the Internet usage frequency distribution. Plot the midpoint on the ______ axis and the frequency on the ______ axis.

Class	Midpoint	Frequency, f
7 - 18	12.5	6
19 – 30	24.5	10
31 - 42	36.5	13
43 - 54	48.5	8
55 - 66	60.5	5
67 – 78	72.5	6
79 – 90	84.5	2

Solution: Frequency Polygon

The graph should begin and end on the horizontal axis, so extend the left side to one class width before the first class midpoint and extend the right side to one class width after the last class midpoint.

		
- -		
		-
. ▼		

You can see that the frequency of subscribers increases up to 36.5 minutes and then decreases

4.1 Part II Notes

More Frequencies Graphs

Section 4.1 Part II Objectives

- Can you construct and interpret relative frequency histograms?
- Can you explain the difference between relative frequencies and cumulative frequencies?
- Can you construct and interpret ogives?
- Can you use technology to create displays

Graphs of Frequency Distributions

Relative Frequency Histogram

- Has the same shape and the same horizontal scale as the corresponding frequency histogram.
- The vertical scale measures the _____ frequencies, not frequencies.

Example: Relative Frequency Histogram

Construct a relative frequency histogram for the Internet usage frequency distribution.

Class	Class Boundaries	Frequency, <i>f</i>	Relative Frequency
7 - 18	6.5 - 18.5	6	0.12
19 – 30	18.5 - 30.5	10	0.20
31 - 42	30.5 - 42.5	13	0.26
43 - 54	42.5 - 54.5	8	0.16
55 - 66	54.5 - 66.5	5	0.10
67 – 78	66.5 - 78.5	6	0.12
79 – 90	78.5 - 90.5	2	0.04

Solution: Relative Frequency Histogram

From this graph you can see that _____% of Internet subscribers spent between 18.5 minutes and 30.5 minutes online.

Graphs of Frequency Distributions Cumulative Frequency Graph or Ogive

- A line graph that displays the ______ frequency of each class at its upper class boundary.
- The ______ boundaries are marked on the horizontal axis.
- The cumulative frequencies are marked on the ______ axis.

Constructing an Ogive

- 1. Construct a frequency distribution that includes cumulative frequencies as one of the columns.
- 2. Specify the horizontal and vertical scales.
 - The horizontal scale consists of the upper class boundaries.
 - The vertical scale measures cumulative frequencies.
- 3. Plot points that represent the upper class boundaries and their corresponding cumulative frequencies.
- 4. Connect the points in order from left to right.
- 5. The graph should start at the _____boundary of the first class (cumulative frequency is _____) and should end at the upper boundary of the last class (cumulative frequency is equal to the sample size *n*.).

Example: Ogive

Class	Class Boundaries	Frequency, f	Cumulative Frequency
7 - 18	6.5 - 18.5	6	6
19 – 30	18.5 - 30.5	10	16
31 - 42	30.5 - 42.5	13	29
43 - 54	42.5 - 54.5	8	37
55-66	54.5 - 66.5	5	42
67 - 78	66.5 - 78.5	6	48
79 – 90	78.5 - 90.5	2	50

Construct an ogive for the Internet usage frequency distribution.

Solution: Ogive

From the ogive, you can see that about ______ subscribers spent 60 minutes or less online during their last session. The greatest increase in usage occurs between

_____ minutes and _____minutes

Technology Directions: Graphing Calculator directions (entering a list)

Button	Comments				
STAT					
EDIT	(or just hit ENTER)				
Arrow up to L1					
CLEAR	to erase previous entries				
ENTER					
Type in 1 st entry					
ENTER					
Enter all other items in the same fashion.					

Don't forget to erase L1 if a list has already been entered. There could be "hidden" entries that will impact your calculations.

Button	Comments
STATPLOT	Note: you must have entered L1 (and possibly L2) before you can display any data.
2 nd	
y=	
ENTER	to choose Plot 1
	(Use arrow and ENTER to turn the plot on, if it already isn't on.)
Arrow down and then right to	
choose appropriate graph.	Some displays require L1 and L2.
ENTER	
ZOOM 9	This chooses the window to fit your data automatically.

Technology Directions: Graphing Calculator directions (plotting a list)

Section 4.2 Part I More Graphs and Displays

Section 4.2 Part I Objectives

- Can you graph quantitative data using stem-and-leaf plots and dot plots?
- Can you graph qualitative data using pie charts and Pareto charts?

Graphing Quantitative Data Sets Stem-and-leaf plot

- Each number is _____ into a stem and a leaf.
- Similar to a ______.
- Still contains original data values.
- No _____!
 Data: 21, 25, 25, 26, 27, 28, 30, 36, 36, 45

Example: Constructing a Stem-and-Leaf Plot

The following are the numbers of text messages sent last month by the cellular phone users on one floor of a college dormitory. Display the data in a stem-and-leaf plot.

155	159	144	129	105	145	126	116	130	114	122	112	112	142	126
118	118	108	122	121	109	140	126	119	113	117	118	109	109	119
138	139	122	78	133	126	123	145	121	134	124	119	132	133	124
129	112	126	148	147										

Solution: Constructing a Stem-and-Leaf Plot

- Start by ordering the data!
- The smallest stem should be the 10s digit from the smallest number in the list.
- Include a key.

Include a key to identify the values of the data.

From the display, you can conclude that more than _____% of the cellular phone users sent between 110 and 130 text messages

Example: A stem-and-leaf plot with decimals...

Make a stem-and-leaf plot of the shoe sizes for family members.

1.5, 7, 6.5, 10, 7.5, 3, 10.5, 11, 6.5

Graphing Quantitative Data Sets

Dot plot

Each data entry is plotted, using a point, above a horizontal axis (a ______ line.)

Example: Constructing a Dot Plot

Use a dot plot to organize the text messaging data.

155	159	144	129	105	145	126	116	130	114	122	112	112	142	126	
118	118	108	122	121	109	140	126	119	113	117	118	109	109	119	
139	139	122	78	133	126	123	145	121	134	124	119	132	133	124	
129	112	126	148	147											

- So that each data entry is included in the dot plot, the horizontal axis should include numbers between ______ and _____.
- There is no ______axis.
- To represent a data entry, plot a point above the entry's position on the axis.
- There is no need to ______ the data prior to creating the plot.
- If an entry is repeated, plot another point above the previous point.

Solution: Constructing a Dot Plot

155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 118 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147

From the dot plot, you can see that most values cluster between 105 and 148 and the value that occurs the most is ______. You can also see that ______ is an unusual data value (an ______)

Graphing Qualitative Data Sets Pie Chart

←

- A circle is divided into sectors that represent categories.
- The ______ of each sector is proportional to the frequency of each category.

Example: Constructing a Pie Chart

The numbers of motor vehicle occupants killed in crashes in 2005 are shown in the table. Use a pie chart to organize the data. (Source: U.S. Department of Transportation, National Highway Traffic Safety Administration)

Vehicle Type	Killed:
Cars	18,440
Trucks	13,778
Motorcycles	4,553
Other	823

Solution: Constructing a Pie Chart

Find the relative frequency (percent) of each category

Vehicle Type	Frequency, f	Relative Frequency				
Cars	18,440					
Trucks	13,778					
Motorcycles	4,553					
Other	823					
$\Sigma f =$						

- Construct the pie chart using the central angle that corresponds to each category.
- To find the central angle, multiply ______ by the category's relative frequency.
- For example, the central angle for cars is

360(0.49) ≈ _____∘

Vehicle Type	Frequency,	f Relative	Frequency	Central Angle
Cars	18,44	0 0	.49	
Trucks	13,77	8 0	.37	
Motorcycles	4,55	3 0	.12	
Other	82	3 0	.02	
Vehicle type	Relative frequency	Central angle		
Cars	0.49	176°		
Trucks	0.37	133°		
Motorcycles	0.12	43°		
Other	0.02	7°		

From the pie chart, you can see that most fatalities in motor vehicle crashes were those involving ______.

Graphing Qualitative Data Sets Pareto Chart

- A vertical bar graph in which the ______ of each bar represents frequency or relative frequency.
 I and the second se
- The vertical axis should start at ______.
- The bars are positioned in order of decreasing height, with the tallest bar positioned at the ______.

Example: Constructing a Pareto Chart

In a recent year, the retail industry lost \$41.0 million in inventory shrinkage. Inventory shrinkage is the loss of inventory through breakage, pilferage, shoplifting, and so on. The causes of the inventory shrinkage are administrative error (\$7.8 million), employee theft (\$15.6 million), shoplifting (\$14.7 million), and vendor fraud (\$2.9 million). Use a Pareto chart to organize this data.

(Source: National Retail Federation and Center for Retailing Education, University of Florida)

Solution: Constructing a Pareto Chart

Cause	\$ (million)
Admin. error	
Employee theft	
Shoplifting	
Vendor fraud	

From the graph, it is easy to see that the causes of inventory loss that should be addressed first are ______and _____.

Section 4.2 Part II and Section 4.2 Part II Objectives

More Graphs and Displays

Can you graph paired data sets using scatter plots and time series charts?

Graphing Paired Data Sets Paired Data Sets

- Each entry in one data set _______to one entry in a second data set.
- Graph using a scatter plot.
- The ordered pairs are graphed as ______ in a coordinate plane.
- Used to show the relationship between two quantitative variables.

A marketing manager conducts a study to see if there is a relationship between a person's age and the number of magazines to which that person subscribes. The results are shown below. Solution: Create a scatter plot.

Example: Interpreting a Scatter Plot

As the petal length increases, what tends to happen to the petal width?

The British statistician Ronald Fisher introduced a famous data set called Fisher's Iris data set. This data set describes various physical characteristics, such as petal length and petal width (in millimeters), for three species of iris. The petal lengths form the first data set and the petal widths form the second data set.

Graphing Paired Data Sets Time Series

- Data set is composed of quantitative entries taken at regular intervals over a period of ______.
 - e.g., The amount of precipitation measured each day for one month.

• Use a **time series** chart to graph.

Example: Constructing a Time Series Chart

The table on the following page lists the number of cellular telephone subscribers (in millions) for the years 1995 through 2005. Construct a time series chart for the number of cellular subscribers. (*Source: Cellular Telecommunication & Internet Association*)

Solution: Constructing a Time Series Chart

- Let the horizontal axis represent the _____ (in _____).
- Let the vertical axis represent the number of _____ (in millions).
- Plot the paired data and ______them with line segments. 1995

•	0	1//5	55.0	1
		1996	44.0	ļ
		1997	55.3	I
		1998	69.2	
		1999	86.0	1
		2000	109.5	ł
		2001	128.4	I
		2002	140.8	
		2003	158.7	
		2004	182.1	ĺ
		2005	207.9	
				_

The graph shows that the number of subscribers has been

since 1995, with greater increases recently Using the graphing calculator to create a scatter plot

Age	55	48	26	21	33	50	64	35
# of Subscriptions	2	3	0	4	3	0	6	1

Button	Comments
STAT	
EDIT	(or just hit ENTER)
Clear L1 and L2	
Input data for L1 and L2	Scatterplots are used with 2 quantitative variables
STATPLOT	2 nd , Y=
ENTER	to choose Plot 1
Use arrow and ENTER to turn on the plot, if it isn't already on.	
Use arrow to choose the scatterplot.	L1 and L2 are automatically chosen. If you want two different lists, use 2ND and the appropriate lists, separated by a common (above 7)
ZOOM	
9	

Subscribers

(in millions)

33.8

Year

Using the graphing calculator to graph a time series chart

Year	Subscribers (in millions)		
1995	33.8	Button	Comments
1996	44.0	STAT	
1997	55.3	EDIT	(or just hit ENTER)
1008	69.2	Clear L1 and L2	if needed (arrow to the top, hit CLEAR, ENTER)
1000	96.0	Input data for L1 and L2	Scatterplots are used with 2 quantitative variables
1999	80.0	STATPLOT	2 nd , Y=
2000	109.5	ENTER	to choose Plot 1
2001	128.4	Use arrow and ENTER to turn on the	
2002	140.8	plot, if it isn't already on.	I 1 and I 2 are automatically abasen. If you want
2003	158.7	Use arrow to choose the time plot.	two different lists, use 2ND and the appropriate
2004	182.1	70.01/	lists, separated by a common (above 7)
2000	207.0	ZOOM	
2005	207.9	9	

Prob/Stat Unit 4A Objectives

Objective #1: Can you construct and interpret frequency distributions?

a) Amount (in dollars) of money spent each semester on books by college students. Use 6 classes.

Class interval	Frequency	Relative Frequency	Cumulative Frequency

91, 472, 279, 349, 530, 376, 188, 341, 266, 199, 142, 273, 189, 130, 489, 266, 248, 101, 375, 486, 190, 398, 188, 269, 43, 30, 127, 354, 84

b) What is the class width for part a)?

Objective #2: Can you calculate midpoints and boundaries?

Extend the frequency distributions you made above to include midpoints, relative frequencies, and cumulative frequencies.

Class interval	Frequency	Midpoint	Class Boundary	Relative Frequency	Cumulative Frequency

Objective #3: Can you explain in words the difference between a relative frequency and a cumulative frequency?

a) Use the dollar amounts from 1a) to construct a frequency histogram using midpoints.

b) Use the dollar amounts from 1a) to construct a frequency histogram using class boundaries.

c) Determine the number of classes.

d) What are the class boundaries of the class with the highest frequency?

- e) What is the class width?
- f) What is Σf ?

Objective #5: Can you construct and interpret frequency polygons?

a) Construct a frequency polygon with the data from Objective 1a).

b) Identify the class with the greatest frequency.

d) Identify the class(es) with the least frequency.

a) Construct a relative frequency histogram from the data in Objective 1a).

b) What is the relative frequency for the class with a midpoint of 69.5?

c) What percent of the subjects earned less than \$78.50 per day?

d) What is the greatest relative frequency?

a) Data set: Daily saturated fat intakes (in grams) of a sample of people:

38, 32, 34, 39, 40, 54, 32, 17, 29, 33, 57, 40, 25, 36, 33, 24, 42, 16, 31, 33

b) What is the approximate cumulative frequency for 8.5 years of service?

c) What is the number of years for an approximate cumulative frequency of 19?

d) What is the sample size?

Objective #8: Can you use technology to create displays?

Create the requested displays on your graphing calculator. Compare your results with the ones done by the teacher.

a) Histogram: 17, 20, 45, 68, 33, 19, 52, 40, 37, 20, 29, 31, 60, 51, 43, 38, 33, 35, 28

b) Scatter plot:

List 1	5	9	7	11	3	6	4
List 2	24	11	15	7	25	19	27

Objective #9: Can you graph quantitative data using stem-and-leaf plots and dot plots?

a) Exam scores for a Biology test: 75, 85, 90, 80, 87,

- 67, 82, 88, 95, 91, 73, 80, 83, 92, 94, 68, 75, 91, 79,
- 95, 87, 76, 91, 45. Make a stem-and-leaf plot.

b) Thickness (in cm) of ice measured at different locations on a frozen lake: 5.8, 6.4, 6.8, 7.2, 5.1, 4.9, 4.3, 5.8, 7.0, 6.8, 8.1, 7.5, 7.2, 6.8, 5.8, 7.2, 8.0, 7.0, 6.8, 5.9. Make a stem-and-leaf plot.

c) Number of advertisements seen or heard in one week by a sample of 30 people from the United States: 598, 494, 703, 598, 728, 690, 684, 486, 735, 808, 734, 590, 673, 598, 702, 481, 598, 135, 846, 764, 135, 649, 732, 582, 637, 588, 540, 728, 486, 703. Make a dot plot.

a) Make a pie chart of the number of countries in the United Nations for various continents:

North America: 23 Europe: 43 Africa: 53 South America: 12 Oceania: 14 Asia: 47

b) Make a Pareto Chart of the types of incidents involving cell phone usage while driving: Swerved: 46 Speeding: 40 Cut off a car: 21 Hit a car: 9

Objective #11: Can you graph paired data sets using scatter plots and time series charts? a) Use a scatter plot to display the data in the table. Describe any trends shown.

Hours Worked in One Week	Hourly Wages (\$)
33	12.16
37	9.98
34	10.79
40	11.70
35	11.80
33	11.51
40	13.65
33	12/05
28	10.54
45	10.30
37	11.50
38	10.37

b) The table below shows the daily high temperatures for a city for a period of 12 days. Use a time series to display the data.

Date	Temperature
	(in F ^o)
May 1	77
May 2	77
May 3	79
May 4	81
May 5	82
May 6	80
May 7	85
May 8	87
May 9	90
May 10	84
May 11	89
May 12	85

