Day	Date	Assignment (Due the next class meeting)
Monday	9/18/23 (A)	Matrices Lesson 1: Matrix Operations
Tuesday	9/19/23 (B)	HW: Practice Problems Lesson 1
Wednesday	9/20/23 (A)	Matrices Lesson 2: Vectors
Thursday	9/21/23 (B)	HW: Practice Problems Lesson 2
Friday	9/22/23 (A)	Matrices Lesson 3: Inverses, Determinants, Solving Systems
Monday	9/25/23 (B)	HW: Practice Problems Lesson 3
Tuesday	9/26/23 (A)	Review
Wednesday	9/27/23 (B)	HW: Practice Test
Thursday	9/28/23 (A)	Matrix Unit Test
Friday	9/29/23 (B)	

Matrices Lesson 1 Practice Problems

1. In matrix *C*, the entries are the numbers of students in a chess club at a high school. Column 1 lists boys, column 2 lists girls, row 1 lists juniors, and row 2 lists seniors. What does the number in position c_{21} represent?

$$C = \begin{bmatrix} 5 & 6 \\ 4 & 3 \end{bmatrix}$$

2. The rows in matrix A represent the prices of long-sleeved and short-sleeved shirts. The columns represent the fabrics: cotton, linen, and silk. If the sales tax rate is 5%, use scalar multiplication to list the sales tax for each shirt in matrix S. Express each entry as a decimal to the nearest $\begin{bmatrix} 58 \\ -58 \end{bmatrix}$

hundredth. $A = \begin{bmatrix} 25 & 40 & 50 \\ 20 & 35 & 45 \end{bmatrix}$

- 3. Given matrices $X = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$ and $Y = \begin{bmatrix} -4 & 1 \\ 3 & -2 \end{bmatrix}$, complete the matrix for each sum or difference: X + Y, X Y, Y X
- 4. What are the values of the variables in the matrix equation?

$$2\begin{bmatrix} 7.5 & 2x-2 & 6\\ y+7 & 4z & 5 \end{bmatrix} = \begin{bmatrix} 15 & 20 & 12\\ 2 & 20 & 10 \end{bmatrix}$$

5. If $A = \begin{bmatrix} 2 & 1 & -3 \\ 5 & -4 & -6 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -1 & 3 \\ -5 & 4 & 6 \end{bmatrix}$, and $C = \begin{bmatrix} -2 & -5 \\ -1 & 4 \\ 3 & 6 \end{bmatrix}$, which statements about matrices *A*, *B*, and *C* are true? Select all that apply.

- A Matrices A and B are additive inverses.
- **B** Matrices *A* and *C* are additive inverses.
- C Matrices *B* and *C* cannot be combined using addition or subtraction.
- **D** Matrices *A* and *B* cannot be combined using addition or subtraction.
- $\mathbf{E} \qquad A+B=B+A$

 $\mathbf{F} \qquad A - B = B - A$

6.

Find the additive inverse of the matrix
$$X = \begin{bmatrix} 2 & -5 \\ -6 & 3 \end{bmatrix}$$

- 7. \overline{EF} has endpoints (2, 4) and (4, 5).
 - **a.** Use matrices to translate \overline{EF} 2 units right and 4 units down to \overline{YZ} . What are the coordinates of Y and Z?
 - **b.** Use matrices to dilate \overline{EF} to \overline{UV} by a scale factor of 4, centered at the origin. What are the coordinates of U and V?
- 8. Solve for x and y: $\begin{bmatrix} 5x & 7 \\ -4 & 2x \end{bmatrix} + \begin{bmatrix} y & 3 \\ 13 & y \end{bmatrix} = \begin{bmatrix} 13 & 10 \\ 9 & 7 \end{bmatrix}$

Lesson 1 Practice Problems Continued on next page...

For # - 13 use the matrices to perform the following operations. If not possible, explain why.

$$A = \begin{bmatrix} 8 & 7 & -4 \\ 1 & -4 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} -9 & -7 \\ -2 & 2 \\ 10 & 9 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & -5 \\ -2 & 8 \end{bmatrix}, \qquad D = \begin{bmatrix} -10 \\ 1 \\ 7 \end{bmatrix}, \qquad E = \begin{bmatrix} 10 & -5 & -5 \end{bmatrix}$$

9. $A \cdot B$ 10. $B \cdot A$ 11. $A \cdot C$ 12. $2B \cdot C$ 13. $C \cdot D$
14. Find IQ , if $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 3 & -5 & 0 \\ -7 & 4 & 8 \\ 2 & 6 & -3 \end{bmatrix}$

For #15-16, determine whether each equation is true for the following matrices: $A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}, B = \begin{bmatrix} -4 & 0 \\ -1 & 8 \end{bmatrix}, C = \begin{bmatrix} 5 & 1 \\ 7 & -2 \end{bmatrix}$

15.
$$(A + B)C = AC + BC$$
 16. $A(BC) = (AB)C$

17. Raul owns and operates two souvenir stands. At his baseball park stand, sweatshirts cost \$45 and T-shirts cost \$20. At his football stadium stand, sweatshirts cost \$50 and T-shirts cost \$15. Today Raul sold 20 sweatshirts and 25 T-shirts at each stand. Use matrix multiplication to find the total amount in daily sales at each souvenir stand.

For #18-19: A drama teacher assigns final grads in her class based on the weighted system shown below. The matrix G represents the grades for Kiyo and his two friends, Rachel and Leo.

tests [90 83 G = proj | 94 | 88 | 96 |part 98

94 89

2. $\overrightarrow{MN} = \langle -3, 7 \rangle$ and $\overrightarrow{NO} = \langle -1, -2 \rangle$

6. $\vec{t} = \langle -4, 8 \rangle$ scalar = 6

18. Write matrix W as a 1x3 matrix to represent the weighted grading system.

19. Perform matrix multiplication to find the final grades for each of the three students.

20. Refer to quadrilateral EFGH for questions a - c.

- Create matrix A to represent the coordinates of a. quadrilateral EFGH.
- Multiply matrix A by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ b.
- Graph the quadrilateral represented by the resulting matrix and describe the movement of the c. quadrilateral in the coordinate plane.

Matrices Lesson 2 Practice Problems

Add each vector pair.

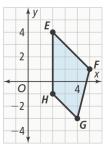
1. $\overrightarrow{MN} = \langle 10, 5 \rangle$ and $\overrightarrow{NO} = \langle -2, 5 \rangle$

Subtract each vector.

3.
$$\vec{\mathbf{S}} = \langle 2, -6 \rangle, \ \vec{t} = \langle -1, 4 \rangle$$

4. $\vec{\mathbf{S}} = \langle 4, 7 \rangle, \ \vec{t} = \langle 0, -1 \rangle$

Multiply each vector by the given scalar.


5. $\vec{t} = (2, 3)$ scalar = 8

7. Reflect $\overrightarrow{EF} = (5, 3)$ across the x-axis using a matrix. 8. Reflect $\overline{GH} = \langle 2, 1 \rangle$ across the y-axis using matrices.

10. Describe how the magnitude and the direction of $t = \langle x, y \rangle$ is affected when t is multiplied by a scalar of z. a scalar of -z?

11. SKIP Emelia is paddling a kayak in the ocean at 5 mph headed 20° north of west. The current of the ocean is 3 mph at a direction that is 20° east of south. What are the magnitude and direction of the path of her kayak as she paddles across the ocean?

Drama Syllabus
Tests 45%
Projects 30%
Participation 25%

12. Which of the following operations will reflect the vector (3, -2) across the y-axis?

А.	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix}$	B.	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix}$
C.	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix} \cdot \begin{bmatrix} 3\\-2 \end{bmatrix}$	D.	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

13.

Three matrices are given below.

 $X = \begin{bmatrix} -2 & 0\\ 5 & 7 \end{bmatrix} \qquad Y = \begin{bmatrix} -1 & 3\\ -5 & 8 \end{bmatrix} \qquad Z = \begin{bmatrix} 11 & 3\\ 5 & -7 \end{bmatrix}$

Which of the following statements are true? Select all that apply.

F.
$$(X + Y)Z = XZ + YZ$$

G. $XY = YX$
H. $-5(XY) = (-5X)Y$
I. $X(Y + Z) = XY + XZ$
J. $X + Y = Y + X$
K. $Y - Z = Z - Y$

Matrices Lesson 3 Practice Problems

For 1 - 5, find the determinants of the following matrices, or if it's not possible, explain why:

1.
$$\begin{bmatrix} -8 & -9 \\ 5 & -10 \end{bmatrix}$$
 2. $\begin{bmatrix} -2 & -4 \\ 10 & -10 \end{bmatrix}$

 3. $\begin{bmatrix} 7 & 2 & -6 \\ 10 & 5 & -4 \end{bmatrix}$
 4. $\begin{bmatrix} -5 & 9 & 9 \\ -10 & -8 & 4 \\ 10 & 3 & -4 \end{bmatrix}$
 5. $\begin{bmatrix} -9 & 10 & -6 \\ -2 & -8 & -5 \\ 7 & -3 & 2 \end{bmatrix}$

 For #6-10. Does each given matrix have an inverse? If so, find it.

For #6-10, Does each given matrix have an inverse () in so, into it. 6. $P = \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix}$ 7. $R = \begin{bmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{bmatrix}$ 8. $Q = \begin{bmatrix} -6 & -9 \\ -4 & -6 \end{bmatrix}$ 9. $S = \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix}$ 10. Are $\begin{bmatrix} 8 & 4 \\ 4 & -2 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{16} & \frac{1}{8} \\ \frac{1}{8} & -\frac{1}{4} \end{bmatrix}$ inverses? Explain how you know.

11. SKIP A student sketches a triangle with vertices at (5, 12), (8, 9), and (3, 6). Using vectors, what is the area of the triangle?

For #12-13, Solve the matrix $A \cdot X = B$ for the following matrices:

12.
$$A = \begin{bmatrix} 8 & -7 \\ -6 & 4 \end{bmatrix}, B = \begin{bmatrix} 11 \\ -12 \end{bmatrix}$$

13. $A = \begin{bmatrix} 2 & 8 & 4 \\ 1 & -1 & -3 \\ -3 & 2 & -9 \end{bmatrix}, B = \begin{bmatrix} 26 \\ -2 \\ 37 \end{bmatrix}$

For #14-17, Solve the following systems of equations using invers matrices, if possible. Show the setup of your matrices.

14. $\begin{cases} -x + 2y = 8\\ -3x + 6y = -12 \end{cases}$ 15. $\begin{cases} 2x + y + 2z = 18\\ x - y + 2z = 9\\ x + 2y - z = 6 \end{cases}$

16.
$$\begin{cases} -3x + 4y = -4 \\ \frac{1}{2}x - 3y = -11 \end{cases}$$
 17.
$$\begin{cases} 2x + \frac{2}{3}y + z = -8 \\ x + 2y - \frac{1}{3}z = 6 \\ -\frac{1}{2}x + 3y - 2z = 22 \end{cases}$$

For #18-19: Luke had some quarters and dimes in his pocket. The quarters and dimes are worth \$2.55. He has 3 times as many quarters as dimes.

18. Write a matrix equation to find the number of quarters, x, and dimes, y, Luke has.

19. How many quarters and dimes does Luke have?

20. The coordinates (x, y) of a point in a plane are the solution of the matrix equation $\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$. In what quadrant is the point located?

Matrix Unit Practice Test

Part I: No Graphing Calculators! You must show your work!

Let
$$A = \begin{bmatrix} 2 & -3 \\ 3 & -3 \end{bmatrix}$$
 $B = \begin{bmatrix} 3 & 0 \\ -6 & 2 \end{bmatrix}$ $C = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 4 & 1 \end{bmatrix}$ $D = \begin{bmatrix} 2 & 0 \\ -3 & 1 \\ 5 & -2 \end{bmatrix}$ $E = \begin{bmatrix} -1 & -1 & 2 \\ 2 & 2 & -3 \end{bmatrix}$

#1-9: Perform the indicated operation, if possible.

1) -2A 2) C + E 3) B + D 4) BA 5) E $-\frac{1}{2}$ C 6) B⁻¹

7) C⁻¹ 8) DET (A) 9) Find
$$\begin{vmatrix} 10 & 7 \\ -3 & -2 \end{vmatrix}$$

10) Solve for x and y: $2\begin{bmatrix} x & 3\\ 9 & y-2 \end{bmatrix} = \begin{bmatrix} 14 & 6\\ 18 & 5 \end{bmatrix}$ 11) Find $\begin{vmatrix} -4 & 2 & 1\\ 3 & 1 & 0\\ 0 & 2 & -1 \end{vmatrix}$

12) A segment has endpoints (5, -3) and (2, 4) and the matrix form is $\begin{bmatrix} 5 & 2 \\ -3 & 4 \end{bmatrix}$. The segment is translated using the matrix operation $\begin{bmatrix} 5 & 2 \\ -3 & 4 \end{bmatrix} + \begin{bmatrix} -2 & -2 \\ 5 & 5 \end{bmatrix}$. Describe the translation.

13) Describe how $\overline{MN} = \langle -2, 9 \rangle$ is transformed when (a) it is multiplied by the matrix $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) it is multiplied by $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$? 14) Given $\vec{v} = \langle 3, -7 \rangle$ and $\vec{w} = \langle -6, 4 \rangle$: (a) Find $\vec{v} + \vec{w}$ (b) Find $\vec{v} - \vec{w}$

15) Write a matrix that is the additive inverse of $A = \begin{bmatrix} -4 & -3 \\ 15 & -12 \\ 20 & 0 \end{bmatrix}$

Part II: Graphing Calculators are okay. <u>Work must be shown!</u>

Solve the following systems. Set up matrices for each problem.

16)
$$\begin{cases} 4x - 2y = -6 \\ 3x + y = -7 \end{cases}$$
 17)
$$\begin{cases} 5x + 2y = 1 \\ x + 2y = 5 \end{cases}$$
 18)
$$\begin{cases} x + y + 2 = 7 \\ 2x - 3y - z = -1 \\ 3x + 2y - 2z = -4 \end{cases}$$

19)
$$\begin{cases} x - y + 4z = 0\\ 3x - 2y + z = -5\\ 2x - y + 3z = 1 \end{cases}$$
 20)
$$\begin{cases} 2a + 4b + c = 4\\ a + 3b + 2c = 12\\ 3a + b + c = -2 \end{cases}$$

Matrices Lesson 1 Answers

1.	4 boys who are seniors 2.	$S = \left[\begin{array}{rrrr} 1.25 & 2.00 & 2.50 \\ 1.00 & 1.75 & 2.25 \end{array} \right]$	4. $x = 6, y = -6, z = 2.5$
3.	$X + Y = \begin{bmatrix} -2 & -2 \\ 2 & 2 \end{bmatrix} \qquad X - Y = \begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix}$	$ \begin{bmatrix} 6 & -4 \\ -4 & 6 \end{bmatrix} \qquad Y - X = \begin{bmatrix} -6 & 4 \\ 4 & -6 \end{bmatrix} $	5. A, C, E
6.	$X = \begin{bmatrix} -2 & 5 \\ 6 & -3 \end{bmatrix} $ 7.	a. Y: (4, 0); Z: (6, 1) b. U: (8, 16); V: (16, 20)	8. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
9.	$\begin{bmatrix} -126 & -78 \\ -1 & -15 \end{bmatrix}$	$\begin{array}{ccccccc} 10. & \begin{bmatrix} -79 & -35 & 36 \\ -14 & -22 & 8 \\ 89 & 34 & -40 \end{bmatrix}$	11. Not possible
12.	$\begin{bmatrix} 46 & -22 \\ -4 & 52 \\ -56 & 44 \end{bmatrix}$	13. Not possible	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
15.	Yes, both = $\begin{bmatrix} -1 & -7 \\ 37 & -13 \end{bmatrix}$	16. Yes, both = $\begin{bmatrix} 82 & -38 \\ -102 & 34 \end{bmatrix}$	17. [1400] 1375]
18.	[.45 .30 .25]	19. [93.2 87.25 86.15]	20. a. $\begin{bmatrix} 2 & 5 & 4 & 2 \\ 4 & 1 & -3 & -1 \end{bmatrix}$ b. $\begin{bmatrix} -4 & -1 & 3 & 1 \\ 2 & 5 & 4 & 2 \end{bmatrix}$

c. 90° counterclockwise rotation

Matrices Lesson 2 Answers

- 1. **⟨8, 10**⟩
- 4. (**4, 8**), **8.94, 63.43**°
- 7.
- 12. C
- 13. F, H, I, J
- 2. ⟨**−4, 5**⟩ 3. (3, -10), 10.44, -73.30° 5. (16, 24), 28.84, 56.31° 6. (-24, 48), 53.67, 116.57° $T \cdot \overrightarrow{EF} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 5+0 \\ 0+(-3) \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \end{bmatrix} \xrightarrow{8} T \cdot \overrightarrow{GH} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2+0 \\ 0+1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \xrightarrow{9} C$
 - The magnitude for $z \cdot \vec{t}$ increases by a factor of z, while the 10. direction remains the same. The magnitude of $-z \cdot \vec{t}$ increases by a factor of |-z|, or z. The direction of $-z \cdot \vec{t}$ would be the direction of \vec{t} + 180°.

11. 3.83 mph; 196.8° or 16.8° south of west

Matrix Unit Homework

Matrices Lesson 3 Answers

1. 125	2. 60	3. Not possible	4. 350	5403
$6. \begin{bmatrix} 4 & 3 \\ 1 & 1 \end{bmatrix}$	7. 1	8. Does Not Exist	9. 1	10. Yes, the product equals the identity.
11. 12 units ²				

12. $\begin{bmatrix} 4\\ 3 \end{bmatrix}$ 13. $\begin{bmatrix} -3\\ 5\\ -2 \end{bmatrix}$ 14. No solution 15. $\begin{bmatrix} 5\\ 2\\ 3 \end{bmatrix}$ 16. $\begin{bmatrix} 8\\ 5 \end{bmatrix}$ 17. $\begin{bmatrix} -2\\ 3\\ -6 \end{bmatrix}$ 18. $\begin{bmatrix} \cdot 25 & \cdot 10\\ 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 2.55\\ 0 \end{bmatrix}$ 19. 9 quarters, 3 dimes 20. IV

Practice Test Answers

1. $\begin{bmatrix} -4 & 6 \\ -6 & 6 \end{bmatrix}$	2. $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 6 & -2 \end{bmatrix}$	3. Not Possible	$4.\begin{bmatrix} 6 & -9\\ -6 & 12 \end{bmatrix}$
5. $\begin{bmatrix} -2 & -3/2 & 7/2 \\ 2 & 0 & -7/2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} 6. \begin{bmatrix} 1/3 & 0 \\ 1 & 1/2 \end{bmatrix}$	7. Not Possible 8.3	9. 1
10. $x = 7, y = 9/2$	11. 16 12. I	Left 2, up 5 13. (a) 180	° Rotation (b) reflect across the y-axis
14. (a) (-3, -3) (b) (9	$(0, -11)$ 15. $\begin{bmatrix} 4\\ -15\\ -20 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 12 \\ 0 \end{bmatrix} 16. \ (-2, -1)$	
17. (-1, 3) 18. ((2, 0, 5)	19. (2, 6, 1)	20. (-3, 1, 6)