Essential Understanding: Can you represent linear situations with equations, graphs, and inequalities, and model constraints to optimize solutions?

Day	Date	Assignment (Due the next class meeting)
8/14/23 (A)	Monday	1.1 Function Notation and Compositions
8/15/23 (B)	Tuesday	HW: 1.1 Practice, Sign Syllabus and pay \$3 lab fee
8/16/23 (A)	Wednesday	1.2 Equations of Lines
8/17/23 (B)	Thursday	HW: 1.2 Practice
8/18/23 (A)	Friday	1.3 Systems of Equations
8/21/23 (B)	Monday	HW: 1.3 Practice, have you paid your lab fee?
8/22/23 (A) 8/23/23 (B)	Tuesday Wednesday	1.4 Set and Interval Notation HW: 1.4 Practice HW: Start the Practice Test, have you paid your lab fee?
8/24/23 (A)	Thursday	Unit 1 Practice Test
8/25/23 (B)	Friday	(note: any late HW due by the start of the test next class)
8/28/23 (A) 8/29/23 (B)	Monday Tuesday	Unit 1 Test Notes/HW: 2.1 Intro Simplifying Radicals Notes (last page of your student notes)

• Be prepared for daily quizzes

• Need help? Try <u>www.khanacademy.org</u>

- Check <u>www.washoeschools.net/DRHSmath</u> in order to get information on how to access the textbook website, copies of notes, and other handouts.
- Students who complete every assignment for the semester are eligible for a 2% grade bonus.
- Students with no late assignments also get a pizza party!

Show the original problem, all work, and solutions on your own paper!

1.1 Practice Problems:

For #1-15, use $f(x) = -6x + 9$	$g(x) = 5x-2; h(x) = -3; d(x) = -3x^2$	
1) Find $g(-3)$.	2) Find $f\left(\frac{1}{3}\right)$.	3) Find <i>x</i> if $d(x) = -12$.
4) Find <i>x</i> if $g(x) = 11$.	5) Find $f(x) + g(x) - h(x)$.	6) Find $g(x) - f(x)$.
7) Find $\frac{f(x)}{h(x)}$	8) Find $f(x) \cdot g(x)$.	9) Find $f(g(x))$.
10) Find $g(d(x))$.	11) Find $d(g(x))$.	12) Find $g(x + 4)$.
13) Find $f(f(x))$.	14) Find $g(f(d(x)))$.	15) Find $g(d(4))$.

16) Beatriz is planning a roadtrip, and she usually drives 65 miles per hour. Which statement below is true?

- a) The domain is distance, and the range is hours.c) The domain is hours and the range is speed.
- b) The domain is speed and the range is distance.
- d) The domain is hours and the range is distance.

For #17-21, solve each equation for the variable.

For #23-28, Factor each expres	sion:	
$20)\frac{3}{7-x} = \frac{5}{x+1}$	21) $4(2x-1) - 5x = 2 + 4(3-x)$	22) Solve for <i>y</i> : $3y - 2x = 12$
17) $3x - 5(2 - 4x) = 18$	$18)\frac{2}{3}b - 4 = -7$	19) $\frac{6x+9}{4} = 2x$

23) $x^2 - x - 12$	24) $x^2 + 13x + 42$	25) $4x^2 - 81$
26) $3x^2 + 24x - 99$	27) $2x^2 + 11x + 5$	28) $3x^2 - 27$

Unit 1 Practice Problems

1.2 Practice Problems

For #1 – 6: Graph each line on a coordinate system.

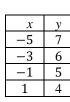
1) $f(x) = -x - 4$	2) $y + 3 = 8$	3) $y + 3 = 6(x - 5)$
4) $12x = -36$	5) $3y = 2x - 1$	6) y - 1 = $\frac{2}{3}(x-7)$

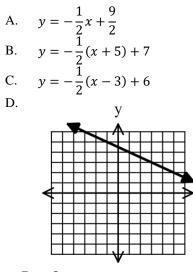
For #7 – 10, write the equation of each line in slope-intercept form.

7) A line has a slope of -3 and passes through the point (1, -5).

- 8) A vertical line passes through the point (2, -8). (special line)
- 9) A line is parallel to $y = \frac{1}{5}x 1$ and goes through the point (10, -3).
- 10) A horizontal line passes contains the ordered pair (-5, -15). (special line)

11) Angelfish cost \$7 each and tetras cost \$8 each. Patty spent \$32 on fish. Write a linear equation in standard form to model this situation.


12) Three students were chosen to show their solutions for solving the equation


y = a(x - h) + k for x.	Their work is shown below.	Determine which students were correct.
-------------------------	----------------------------	--

y = u(x - u) + u for x. Then work is shown below. Determine which students were context.			
Student #1	Student #2	Student #3	
y = a(x - h) + k	y = a(x - h) + k	y = a(x - h) + k	
y - k = a(x - h)	$\frac{y}{a} = (x - h) + k$	$\frac{y}{a} = (x - h) + \frac{k}{a}$	
$\frac{(y-k)}{a} = x - h$	$\frac{y}{a} - k = x - h$	$\frac{y}{a} - \frac{k}{a} = x - h$	
$\frac{(y-k)}{a} + h = x$	$\frac{y}{a} - k + h = x$	$\frac{y}{a} - \frac{k}{a} + h = x$	

A. Students #1 and #2 B. Students #2 and #3 C. Students #1 and #3 D. All were correct

13) Which of the following is NOT an equivalent form of the line represented in the table:

For #14 – 18: f(x) = 5x - 2; $g(x) = -4x^2$; h(x) = -7x + 814) Find g(-3). 15) Find h(g(x)). 16) Find g(f(x)). 17) Fi

17) Find f(x) - h(x). 18) Find f(h(-1)).

Unit 1 Practice Problems

1.3 Practice Problems

For #1 – 2, solve each system of equations by graphing.

1) $2x + 4y = -8$	2) $1 + x = 8$
$y = -\frac{1}{2}x - 2$	<i>y</i> = -5

For #3 – 4, solve each system of equations by any method of your choice.

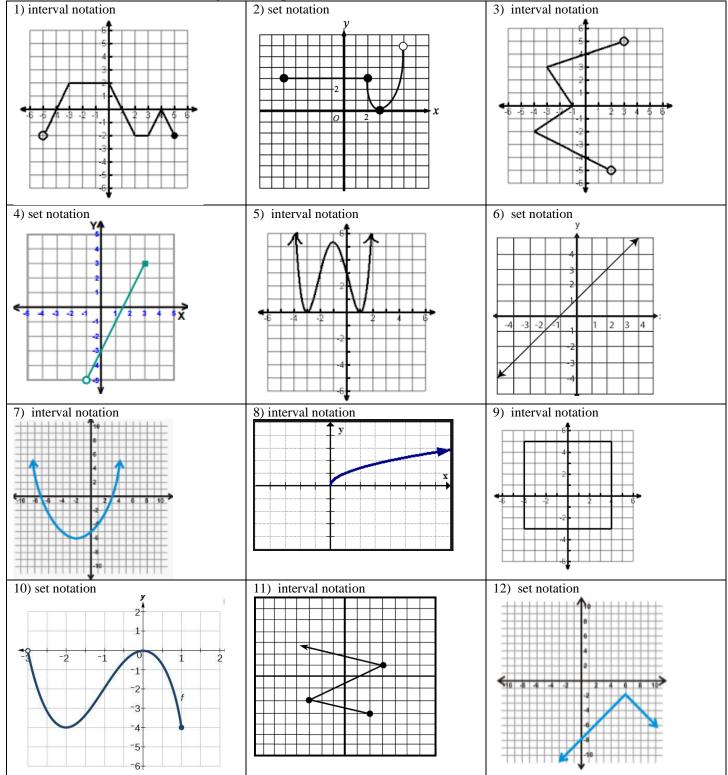
3) $2y = 6x + 1 + 3x$	4) $.25x + .5y = 4$
9x - 2y = 4	.1x25y =2

5) Harold is going to purchase t-shirts for a school fundraiser, and he is considering two companies. Company A charges \$8 per shirt, plus a set-up fee of \$100. Company B charges \$6 per shirt, plus a set-up fee of \$140. Set up a system of equations. DO NOT SOLVE.

6) Brenda has 12 coins in her wallet, consisting only of nickels and quarters, and they have a total value of \$2.00. How many quarters does she have?

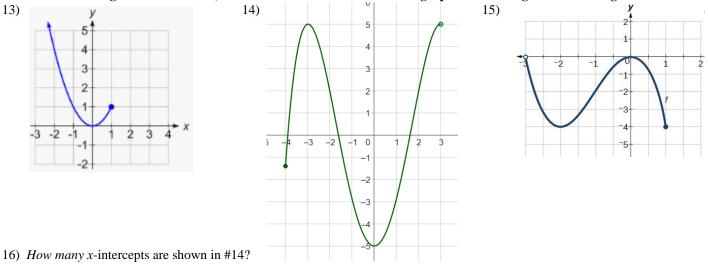
5x - 3 = 7	(2x + 5y + z = -4)
5x - 3 = 7 (3x + 5y - 4z = -13)	8) $\begin{cases} 2x + 5y + z = -4 \\ 4y + z = 0 \end{cases}$
(x-3y+5z=16)	(-2z = -16)

9) A landscaping company placed two orders with a nursery. The first order was for 13 bushes and 4 trees, and totaled \$487. The second order was for 6 bushes and 2 trees, and totaled \$232. The bills do not list the per-item price. What were the costs of one bush and of one tree?


10) Two small pitchers and one large pitcher can hold 8 cups of water. One large pitcher minus one small pitcher constitutes 2 cups of water. How many cups of water can each pitcher hold?

11) A test has twenty questions worth 100 points. The test consists of True/False questions worth 3 points each and multiple choice questions worth 11 points each. How many multiple choice questions are on the test?

12) Solve: $\begin{cases} x + y + z = 4 \\ x - 2y - z = 1 \\ 2x - y - 2z = -1 \end{cases}$ For #13 - 15, $f(x) = 3x^2$; g(x) = 8 - 2x; $h(x) = 4x^2 + 5x$ 13) Find h(-6)14) Find f(g(x))15) Find $h(x) \cdot g(x)$


16) Write the equation of a line, in slope-intercept form, that is parallel to 3x - 7y = 21 that passes through (-8, -2).

<u>1.4 Practice Problems</u>

For #1 – 12, find the domain and range in the requested form. Also, determine if the relation is a function or not.

1.4 assignment continued on the next page...

For #13 - 15: Using interval notation, describe the x -values where each graph is increasing and decreasing.

Unit 1 Practice Test

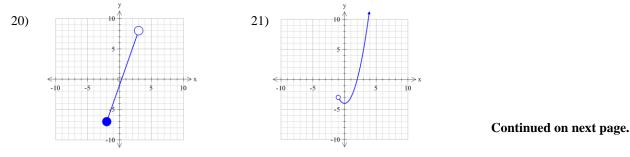
For #1-6: $h(x) = 5x^2$, f(x) = 3x - 11, and g(x) = -2x - 5

1) Find $f\left(-\frac{5}{3}\right)$. 4) Find $h(x) \cdot g(x)$.	 Find <i>x</i> if g(x) = -27. Find h(g(x)). 	3) Find $g(x) + f$ 6) Find $f(f(-2))$.	(<i>x</i>).
For 7 – 10, graph each line. 7) <i>y</i> – 6 = 5(<i>x</i> + 2)	8) $y = x + 5$	9) $-2y = 4x + 2$	10) $y = -(x - 3) + 1$

For 11 – 12, write the equation of each line described (in slope-intercept form unless otherwise specified.)

11) A line is parallel to y = 2x - 1 and goes through the point (-10, -3).

12) A vertical line passes through the point (-2, 7). (special line)


For 13 – 14, solve each system of equations by any method of your choice.

3x + 6y = -3	(x+3y-2z=-5)
13) $\begin{cases} 3x + 6y = -3\\ 7 - y + 2(x - 1) = -2 + 3x \end{cases}$	14) $\begin{cases} x + 3y - 2z = -5\\ 3x - y + 4z = 15\\ -2x + y + z = -7 \end{cases}$
(7 - y + 2(x - 1)) = -2 + 3x	(-2x + y + z = -7)

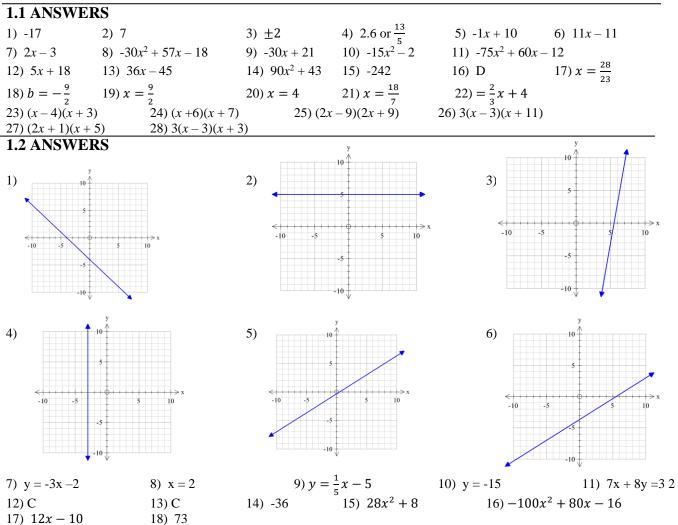
15) Gary has 14 coins comprised entirely of dimes and nickels, totaling \$1.00. How many of each type of coin does he have?

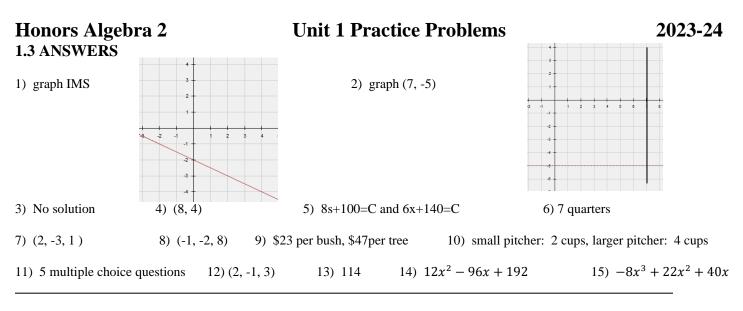
- **For 16 19:** Use the function f(x) = 2x.
- 16) What is the domain and range?
- 18) What are the intercepts?
- 17) Is the function increasing or decreasing?19) What is the slope?

For 20-21: State the domain and range in both set notation and interval notation.

Honors Algebra 2

Unit 1 Practice Problems


Practice Test, continued...

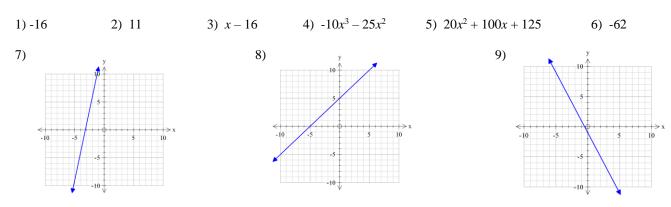

For #22-33, match each domain and range to one of the graphs labeled A to L on the	
For $\#//_33$ match each domain and range to one of the graphs labeled Δ to L on the	last nage of the practice nacket
For <i>maze-55</i> , match cach domain and range to one of the graphs labeled <i>I</i> to <i>L</i> on the	ast page of the practice packet

22.	23.	24.	25.
Domain: [-4, 4]	Domain: $\{x -3 < x \le 5\}$	Domain: [-4, 2]	Domain: $\{x x > 0\}$
Range: [-4, 4]	Range: $\{y y = -1\}$	Range: [-2, 4]	Range: $\{y y = 4\}$
Function: No	Function: Yes	Function: Yes	Function: Yes
26.	27.	28.	29.
Domain: $\{x -6 \le x \le 6\}$	Domain: [-5]	Domain: $\{x x \ge 0\}$	Domain: [-3, 4]
Range: $\{y 0 \le y \le 6\}$	Range: (-2, 6)	Range: $\{y y \text{ is } \mathbb{R}\}$	Range: [-2, 4]
Function: Yes	Function: No	Function: No	Function: No
30.	31.	32.	33.
Domain: $(-\infty, \infty)$	Domain: $\{x -7 \le x < 5\}$	Domain: $(-\infty, \infty)$	Domain: (-3, 4)
Range: $(-\infty, \infty)$	Range: $\{y -3 \le y < 1\}$	Range: $[0, \infty)$	Range: [0, 5)
Function: Yes	Function: Yes	Function: Yes	Function: Yes

34) How many x-intercepts does graph J have? How about graph B?

Practice Problem Answers

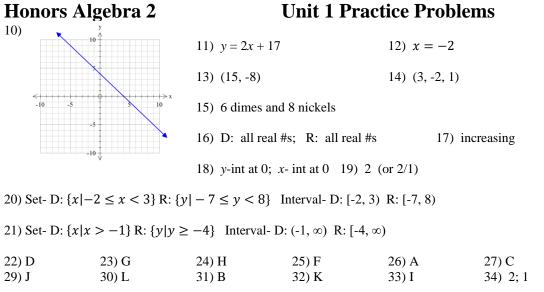
1.4 ANSWERS

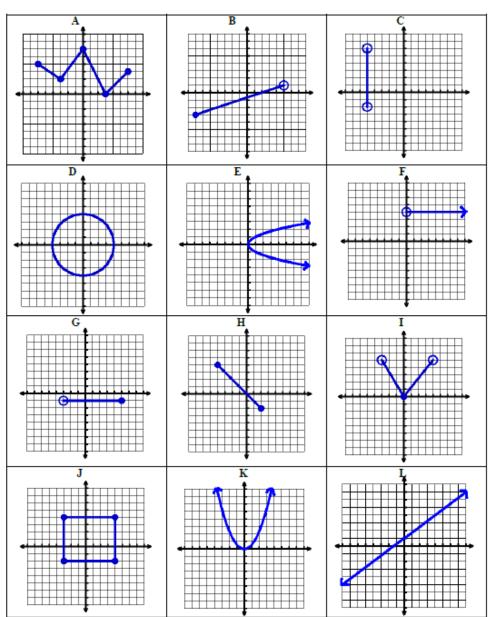

1) D: (-5, 5]; R: [-2, 2]; function	2) D: $\{x \mid -5 \le x < 5\}$; R: $\{y \mid 0 \le y < 6\}$; function
3) D: [-4, 3); R: (-5, 5); not a function	4) D: $\{x -1 < x \le 3\}$; R: $\{y -5 < y \le 3\}$; function
5) $D: (-\infty, \infty); R: [0, \infty)$, function	6) D: { x all real numbers}; R: { y all real numbers}; function
7) <i>D</i> : $(-\infty, \infty)$; <i>R</i> : $[-6, \infty)$, function	8) <i>D</i> : $[0, \infty)$; <i>R</i> : $[0, \infty)$; function
9) <i>D</i> : [-4,4]; <i>R</i> : [-3,5]; not a function	10) D: $\{x -3 < x \le 1\}$; R: $\{y -4 \le y \le 0\}$; function
11) D: $(-\infty, 3]$; R: $\{-3, \infty\}$; not a function	12) <i>D</i> : { <i>x</i> all real numbers}; R: { <i>y</i> <i>y</i> ≤ -2 }

*Note on intervals for increasing and decreasing: Different textbooks handle the intervals in two main methods. Some textbooks use closed intervals (look of the definition of increasing/decreasing to get an idea as to WHY), while most using exclusively open intervals. We have used open intervals only below.

13) increasing on (0, 1); decreasing $(-\infty, 0)$ 14) increasing on (-4, -3) and (0, 3); decreasing on (-3, 0)

15) increasing on (-2, 0); decreasing on (-3, -2) and (0, 1) 16) 3


Practice Test ANSWERS


Unit 1 Practice Problems

2023-24

28) E

USE THESE FOR QUESTIONS 22-33 IN Practice Test

