Section 10.4: Systems of Linear Equations in Two Variables

Objectives

- 1. Decide whether an ordered pair is a solution of a linear system.
- 2. Solve linear systems by graphing.
- 3. Solve linear systems by substitution.
- 4. Solve linear systems by addition.
- 5. Identify systems that do not have exactly one ordered-pair solution.
- 6. Solve problems using systems of linear equations.

Systems of Linear Equations & Their Solutions

- · Two linear equations are called a system of linear equations or a linear system.
- A solution to a system of linear equations in two variables is an ordered At that satisfies both equations in the system.

Example 1: Determine whether (1,2) is a solution of the system:

$$2x-3y=-4$$

$$2x+y=4$$

$$2x+y=4$$

$$2x+y=4$$

$$2x+y=4$$

$$2x+y=4$$

2x + y = 4 $\Rightarrow 2 \cdot 1 + 2 = 4 \Rightarrow 2 + 2 = 4 \lor$ Solving Linear Systems by Graphing

• For a system with one solution, the pair of coordinates of the point of intersection of the lines is the system's solution.

Example 2: Solve by graphing:

$$x+2y=2 \rightarrow x+2y=Z$$

$$x-2y=6.$$

$$x \rightarrow x$$

$$-x \rightarrow x$$

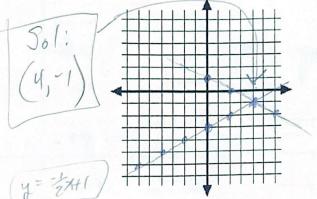
$$-2y=6-x$$

$$-2y=6-x$$

$$-2y=2-x$$

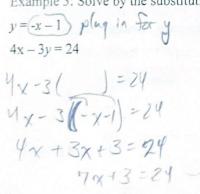
$$y=2-1$$

Solving Linear Systems by the Substitution Method

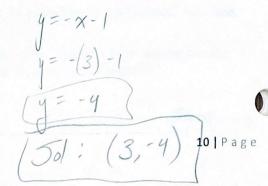


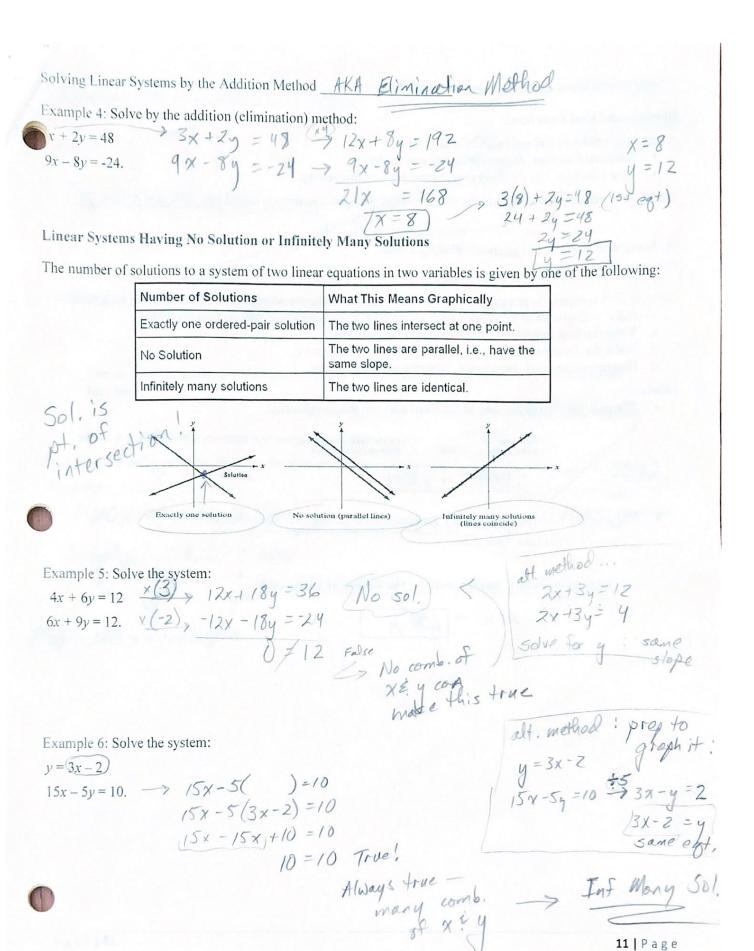
 This method involves converting the system to one equation in one variable by an appropriate substitution.

Example 3: Solve by the substitution method:



$$\begin{array}{c} 7x = 21 \\ \hline (x = 3) \\ \hline (3, -) \end{array}$$





Revenue and Cost Functions

A company produces and sells x units of a product.

- Revenue Function: R(x) = (price per unit sold)x
- Cost Function: C(x) =fixed cost + (cost per unit produced)x

The point of intersection of the graphs of the revenue and cost functions is called the preak-even pt.

Modeling with Systems of Equations: Making Money Finding a Break-even Point

Example 7: A company is planning to manufacture radically different wheelchairs. Fixed cost will be \$500,000 and it will cost \$400 to produce each wheelchair. Each wheelchair will be sold for \$600.

- a. Write the cost function, C, of producing x wheelchairs.
- b. Write the revenue function, R, from the sale of x wheelchairs.
- c. Determine the break-even point. Describe what this means.

Solution:

· The cost function is the sum of the fixed cost and the variable cost.

Fixed cost of \$500,000		plus	Variable cost: \$400 for each chair produced
C(x) =	500000	+	400x

money

• The revenue function is the money generated from the sale of x wheelchairs.

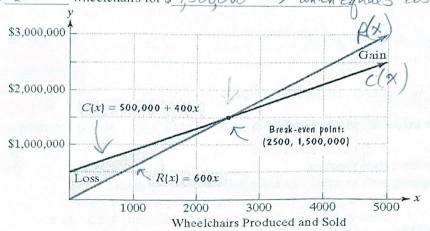
Revenue per chair, \$600, times

the number of chairs sold

$$R(x) = 600 \%$$

money

2500, 1500000.). This means that the company will break even if it produces The break-even point is (and sells 2500 wheelchairs for \$ which equals cost 1,500,000



The profit, P(x), generated after producing and selling x units of a product is given by the profit function

$$P(x) = R(x) - C(x),$$

where R and C are the revenue and cost, respectively.

Example: The profit function, P(x), for the previous example is

$$P(x) = R(x) - C(x)$$

$$= 600 \times -(500,000 + 400 \times)$$

$$= 600 \times -(500,000 - 400 \times)$$

$$= 600 \times -500,000 - 400 \times$$

$$= 500 \times -500,000 - 400 \times$$

$$= 200 \times -500,000$$

