Section 10.4: Systems of Linear Equations in Two Variables

Objectives
Decide whether an ordered pair is a solution of a linear system.
2. Solve linear systems by graphing.
3. Nolve linear systems by substitution
1. Solve linear systems by addition
Identify systems that do not have exactly one ordered-pair solution.
6. Solve problems using systems of linear equations

Systems of Linear Equations & Their Solutions

* Two linear equations are called a system of linear equations or a linear system.

* Asolution to a system of linear equations in two variables is an

olf// Ar

both equations in the system.
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Example 1: Determine whether (1,2) is a solution of the system:
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Solving Linear Systems by Graphing

*  For a system with one solution, the pair of coordinates of the point of intersection of the lines is the

systent’s solution.
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Example 2: Solve by graphing: Oalets . f
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\olxmn 1 maarg 'stems by the Substllulmn Method

+  This method involves converting the system to one equation in one variable by an appropriate

substitution.

Ex amrh 3; Solve by the substitution method:
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Solving Linear Systems by the Addition Method AKA 5(‘,/4{,144':4« //VI@-{} (l' Oﬂ

Example 4: Solve by the addition (climination) method:
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Linear Systems Having No Solution or Infinitely Many Solutions
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The number of solutions to a system of two linear equations in two variables is given b)’/’6§e of the following:

Number of Solutions

What This Means Graphically

Exactly one ordered-pair solution

The two lines intersect at one point.

No Solution

The two lines are parallel, i.e., have the
same slope.

Infinitely many solutions

The two lines are identical.
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Example 5: Solve the syslem b o ‘
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Example 6: Solve the system:
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Modeling with Systems of Equations: Making Money

Revenue and Cost Functions B
A company produces and sells x units of a product. .
* Revenue Function: R(x) = (price per unit sold)x
+  Cost Function: C(x) = fixed cost + (cost per unit produced)x

The point of intersection of the graphs of the revenue and cost functions is called the r/Jf//l/(’ even ,/ }

Modeling with Systems of Equations: Making Money
[Finding a Break-even Point
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Example 7: A company is planning to manufacture radically different wheelchairs. Fixed cost will be $500.000
and it will cost $400 to produce each wheelchair. Each wheelchair will be sold for $600.
a. Write the cost function, C, of producing x wheelchairs.
b. Write the revenue function, R, from the sale of x wheelchairs.
¢. Determine the break-even point. Describe what this means.
Solution:
*  The cost function is the sum of the fixed cost and the variable cost. /
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*  The revenue function is the money generated from the sale of x wheelchairs. .
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I'he break-even point is (4 32)0} AJﬂOJDﬁ!/ ). This means that the company will break even if it produces
and sells 2507 wheelchairs for $ /500000 —> wh ich fﬁm 4&5 cost
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*  The profit, P(x), generated after producing and selling x units of a product is given by the profit

function
Profit functlon
P(x) = R(x) - C(x), REEIX)=200%5:2200:000
where R and C are the revenue and cost, respectively. e .
Example: The profit function, P(x). for d gt
xample: The profit function, P(x), for the previous example is Bysioes
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