Date	Day	Assignment
Tuesday	11/29/22	Notes: 5.1 Notes
Wednesday	11/30/22	HW: 5.1 Worksheet
Thursday	12/01/22	Notes: 5.2 Notes
Friday	12/02/22	HW: 5.2 Worksheet
Monday	12/05/22	Notes: 5.3 Notes
Tuesday	12/06/22	HW: 5.3 Worksheet
Wednesday	12/07/21	Chapter 5 Project
Thursday	12/08/21	HW: Semester Review Worksheet #1

HW Hints:

- > Check your answers, and view solutions for your corrections at www.washoeschools.net/DRHSmath
 Check out our class YouTube channel:
- https://www.youtube.com/channel/UCh9fLvgw9metmQuIb6vQ5Zw
- Show all work and draw the diagrams for each problem.
 Students who complete every assignment this semester will get a 2% bonus.
- For extra practice, visit <u>www.khanacademy.org</u>

Check out <u>www.mathguy.us</u> for extra help.

5.1 Notes: Inequalities in Triangles

Objectives:

- Students will be able to use relationships between sides and angles of a triangle.
- Students will be able to find range of values for an unknown side of a triangle.
- Students will be able to determine if a triangle can be created when given three side lengths.

Exploration #1: Use the following link to explore angles and sides in a triangle: <u>https://www.geogebra.org/m/kd6SuMfY</u> Click on the vertices of the triangle to change the angle measurements.

- Which angle is the largest? Which side is the largest?
- Which angle is the smallest? Which side is the smallest?
- Move the vertices of the triangle around. Repeat the questions above.
- What do you notice?
- Make a **conjecture** ("guess") about the relationship between the size of angles and sides in a triangle.

Examples 1 – 2: Identify the longest side and the shortest side in each triangle. Reminder: diagrams are not always drawn to scale. A

Geometry

Ch 5 Notes: More About Triangles

DRHS 2022

Examples 3 – 4: Identify the largest and smallest angle in each triangle. Reminder: diagrams are not always drawn to scale.

Geometry

Ch 5 Notes: More About Triangles

Exploration #2: Use the following link to explore the lengths of sides in a triangle: <u>https://www.geogebra.org/m/K5CEeBEu</u> Click on the slider to change the lengths of segments. Move the vertices around to form (connect) a triangle.

- Can any combination of side lengths form a triangle?
- Find a combination of side lengths that cannot form a triangle. Write down the side lengths:
- Make a **conjecture** ("guess") about the relationship of the lengths of sides that must be true in order for a triangle to be formed.

	For any real triangle, the sum	
Triangle of any two side lea	of any two side lengths must	
Inequality Theorem	be than the	
	third side length.	

Examples:	For #9 – 14, decide if the given sides	could form a real triangle or not.
9) 3, 10, 5	10) 7, 7, 13	11) 5, 5, 10

You try!

12) 9, 6, 11 13) 4, 8, 4 12) 3, 18, 12	·		
	12) 9, 6, 11	13) 4, 8, 4	12) 3, 18, 12

13) Create side lengths for a triangle that would *not* connect to form a real triangle. Explain your reasoning for choosing these side lengths.

Range of values: Examples: For #16 – 20, given two known sides of a triangle, find the range of values for the missing side that would create a real triangle					
You try! 18) 22, 30	19) 1, 2	20) 10, 10			

5.2 Notes: Perpendicular Bisectors

Objectives:

- Students will be able to use perpendicular bisectors to solve problems.
- Students will be able to use the Perpendicular Bisector Theorem.

₽F

Exploration #1: Explore what happens when points are on a perpendicular bisector. Click on this link:

https://www.geogebra.org/m/KonTw1JA#:~:text=Perpendicular%20Bisector%20Theorem%2 0(selias33)%20A,the%20endpoints%20of%20that%20segment.

1) Click on the box that says "Points on Bisector".

- 2) Move points F and G around on the bisector. What do you notice?
- 3) Unclick the box that says "Points on Bisector". Click the box for "Points NOT on bisector". What do you notice?
- 4) Make a **conjecture** ("guess") about what happens when points are on a perpendicular bisector.

5.3 Notes: Medians and Altitudes

Objectives:

- Students will be able to solve problems involving medians.
- Students will be able to solve problems involving altitudes.

For examples 10 - 14, determine why each pair of triangles are congruent. Use the diagram and the given information.

10) Given: *DB* is a median.

You try #12 and 13! 12) Given: *DB* is an altitude

13) Given: DB is the \perp bisector of AC.

Challenge: Both #10 and #13 have more than one solution. See if you can find an alternative way to prove the triangles are congruent.

Ch 5 Study Guide

- 5.1:
 - Inequalities in a Triangle:
 - The largest angle is opposite the longest side.
 - The smallest angle is opposite the smallest side.
- 5.2:
 - Perpendicular bisector: A line or segment that is both perpendicular to and bisects a segment.
 - Perpendicular Bisector Theorem: If a point is on the perpendicular bisector of a segment, then that point is equidistant to the endpoints of the segment.
- 5.3:
 - Median: A segment connecting a vertex of a triangle and the midpoint of the opposite side.
 - Altitude: A segment drawn from a vertex of a triangle, perpendicular to the opposite side.