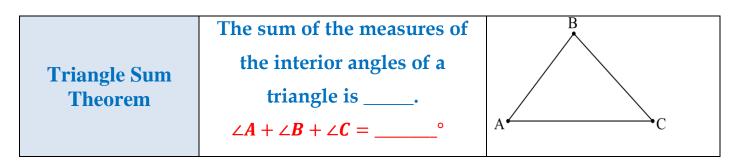
Geometry 4.1 Notes: Angles in Triangles

Objectives:

- Students will be able to find missing interior angles in triangles.
- Students will be able to find exterior angles in triangles.

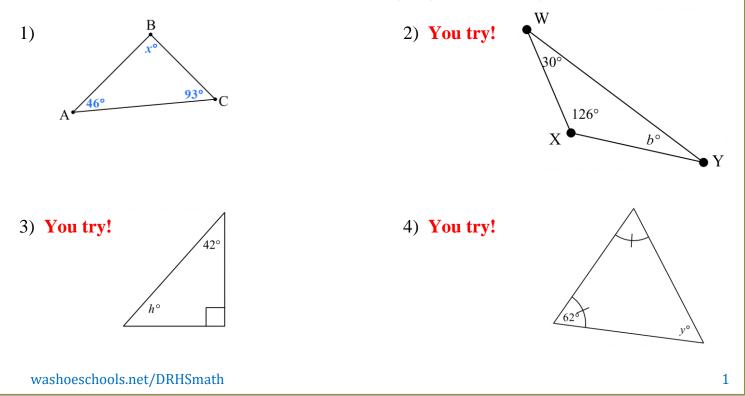
Exploration #1: Use the following link to explore angles in a triangle: <u>https://www.geogebra.org/m/FzUM9TeD</u>

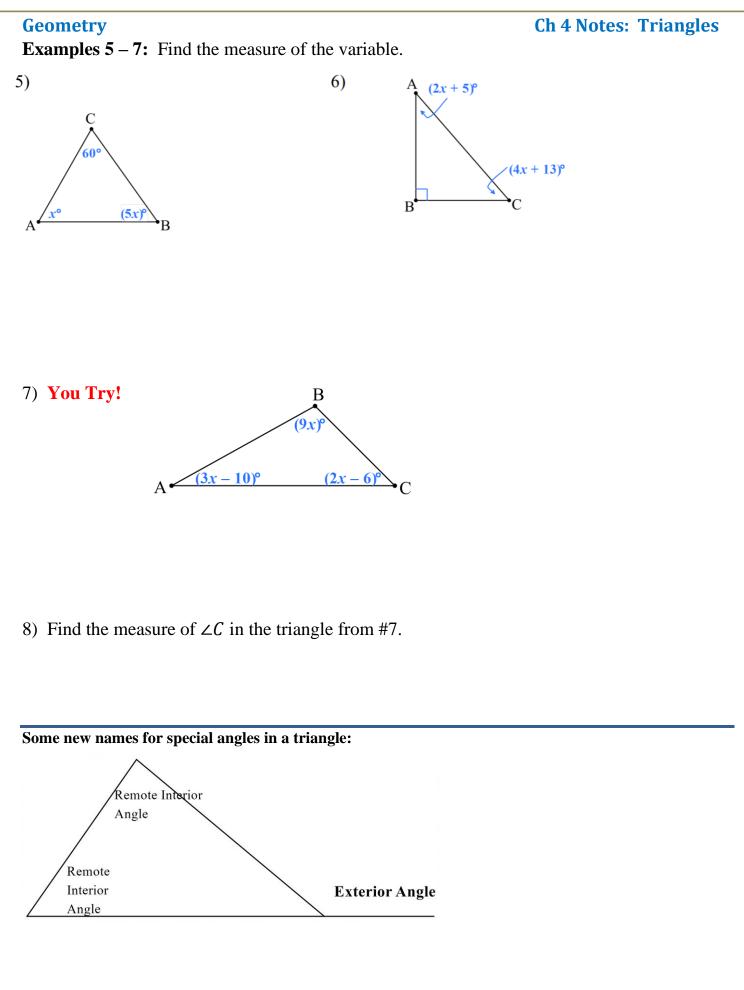
- Click on the vertices of the triangle to change the angle measurements.
- What do you notice?
- Make a **conjecture** ("guess") about the angles in a triangle.



A good animation of the Triangle Sum Theorem: <u>https://www.geogebra.org/m/FAhtKpR5</u>

Examples 1 - 4: Find the measure of each missing angle in the triangle shown.

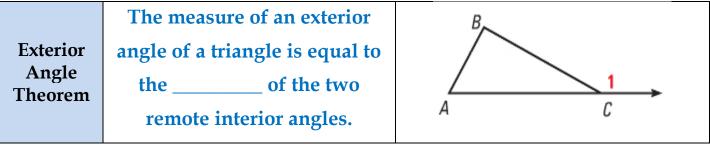




Geometry Exploration #2: <u>https://www.geogebra.org/m/sA5Mb4vd</u>

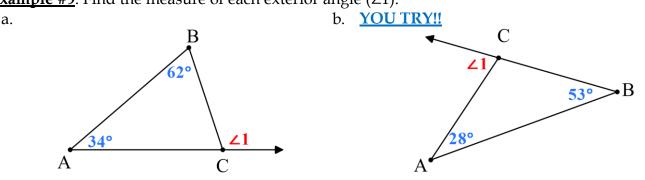
- Click on the link to explore the relationship between an Exterior Angle and its two Remote Interior Angles.
- Make a **conjecture**:

EXTERIOR ANGLE THEOREM

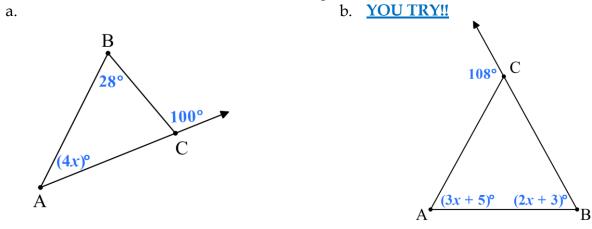


Why is this true?

Example #9: Find the measure of each exterior angle $(\angle 1)$.



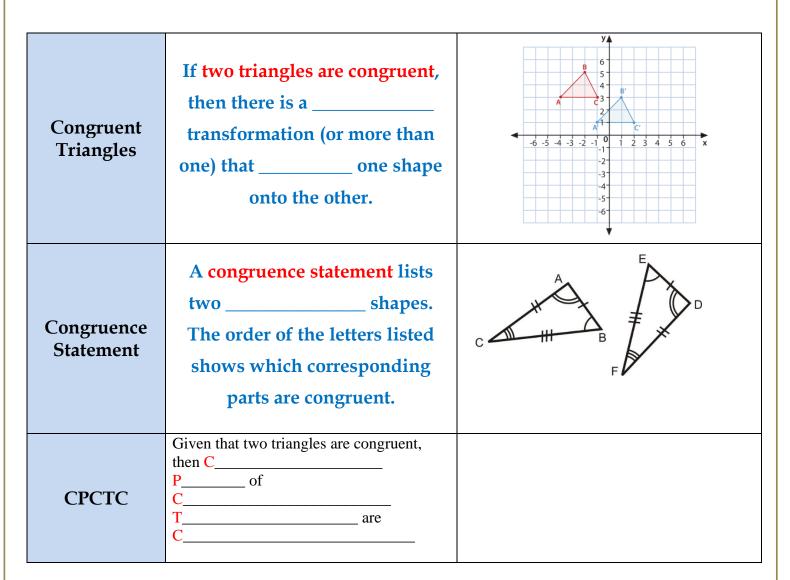
Example #10: Find the value of *x* in each triangle.



Geometry 4.2 Notes: Intro to Congruent Triangles

Objectives:

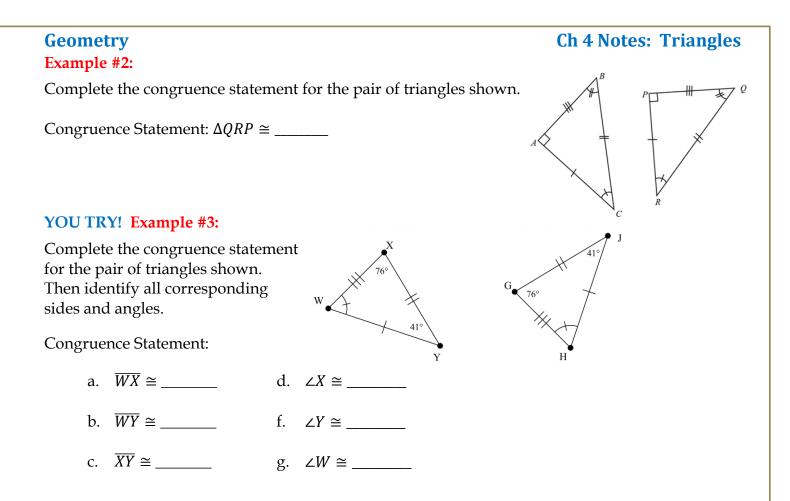
- Students will be able to make a congruency statement for congruent triangles.
- Students will be able to list corresponding parts for congruent triangles.
- Students will be able to find missing measures in congruent triangles.



Example #1:

Given that $\triangle ABC \cong \triangle FED$. Identify all corresponding sides and corresponding angles.

a. $\overline{AB} \cong$ _____d. $\angle A \cong$ _____b. $\overline{BC} \cong$ _____e. $\angle B \cong$ _____c. $\overline{AC} \cong$ _____f. $\angle C \cong$ _____



YOU TRY! Example #4: Given the corresponding parts that are congruent for two triangles, write the congruence statement for the two triangles.

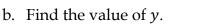
$PL \cong AB$	$\angle P \cong \angle A$	$VP \cong CA$
$\overline{LV} \cong \overline{BC}$	$\angle L \cong \angle B$	$\angle V \cong \angle C$

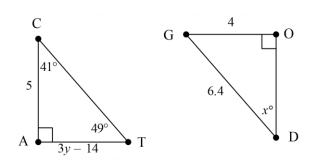
Congruence Statement:

Example #5:

In the diagram, $\Delta DOG \cong \Delta CAT$.

a. Find the value of *x*.





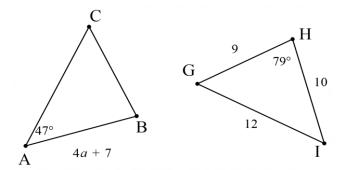
c. Find the perimeter of ΔCAT .

Ch 4 Notes: Triangles

YOU TRY! Example #6:

In the diagram, $\triangle ABC \cong \triangle IHG$.

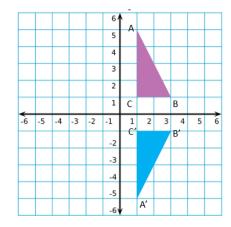
a. Find the value of *a*.



b. Find the measure of $\angle G$.

Example #7: Given the two triangles congruent triangles shown. Which statement below lists the rigid transformation that maps the pre-image onto the image?

- A) Translation (0, -2)
- B) Rotation 180 degrees clockwise about the origin.
- C) Reflection in the *y*-axis.
- D) Reflection in the *x*-axis.
- E) Rotation 90 degrees clockwise about the origin.



x

Example #8: Given the two triangles congruent triangles

shown. Which statement below lists the correct congruence statement and also the rigid transformation that maps one triangle onto the other?

- A) $\triangle ABC \cong \triangle DEF$; rotation 180 degrees about the origin
- B) $\triangle ABC \cong \triangle FDE$; rotation 180 degrees about the origin
- C) $\triangle ABC \cong \triangle DEF$; reflection in the *y*-axis
- D) $\triangle ABC \cong \triangle FDE$; reflection in the *y*-axis

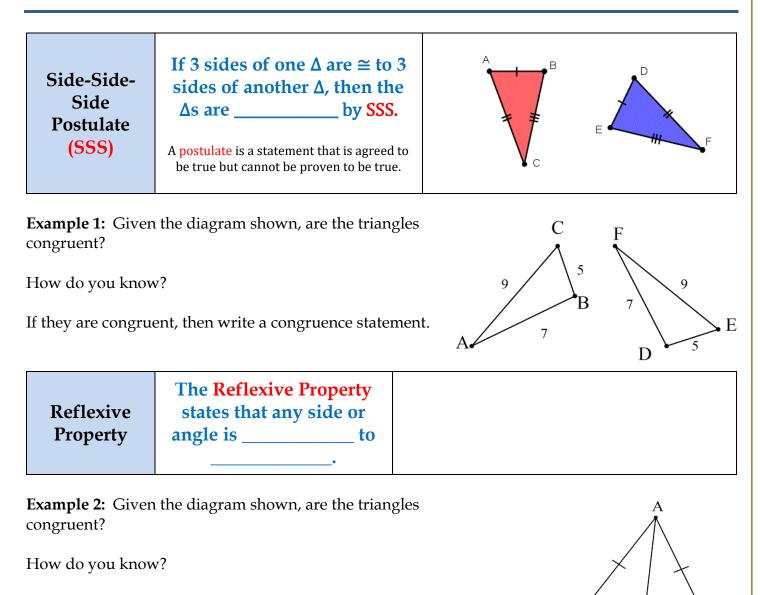
4.3 Notes: SSS and SAS

Objectives:

- Students will be able to identify the postulate or theorem to prove congruent triangles
- Students will be able to prove congruent triangles with SSS or SAS in two-column proofs and use CPCTC.

Exploration #1: Use the following link to explore triangles with the same side lengths: <u>https://www.geogebra.org/m/rxsTwHF9</u>

- Use the sliders to change the lengths of the sides of the first triangle.
- Move the white circle to change the location of one vertex of the second triangle.
- Notice that both triangles have the same three side lengths.
- Make a **conjecture** ("guess") about two triangles that have the same three side lengths:



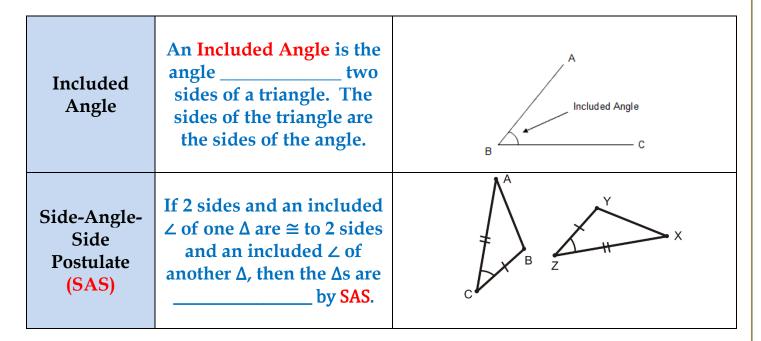
If they are congruent, then write a congruence statement.

в

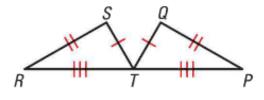
Ch 4 Notes: Triangles

Exploration #2: Use the following link to explore triangles with the two side lengths and one included angle that are congruent: <u>https://www.geogebra.org/m/bM5FkyFK</u>

- Use the sliders on the right to change the lengths of the sides and the measure of the included angle.
- Use the slider on the bottom to copy the first triangle onto the second triangle.
- Make a **conjecture** ("guess") about two triangles that have the two congruent sides and one congruent included angle:



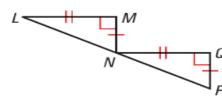
Example #4: Which postulate can be used to prove that $\Delta RST \cong \Delta PQT$?



- a. SSS
- b. SAS
- c. Not Possible; the triangles aren't congruent

Example #5:

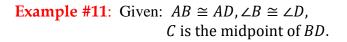
Which postulate can be used to prove that $\Delta LMN \cong \Delta NQP$.



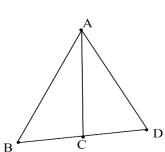
- a. SSS
- b. SAS
- c. Not Possible; the triangles aren't congruent

Geometry		Ch 4 Notes: Triangles
Two- Column Proof	A Two-Column Proof is a	a method of collecting evidence to justify a conclusion
Evidence	Evidence that can be used includes Given information, Definitions, Theorems, Postulates, and Properties.	 If two angles are vertical, then they are = Reflective Property If a point is a midpoint, then the segment is
· · · · · · · · · · · · · · · · · · ·	en: $HI \cong IK$ and $GI \cong IJ$ re: $\Delta HIG \cong \Delta JIK$.	
	Statements	Reasons
Example #10: Gi	ven: $KG \cong HJ, KJ \cong HG$	K G
Pro	ove: $\Delta JKG \cong \Delta GHJ$	J
	Statements	Reasons

Ch 4 Notes: Triangles



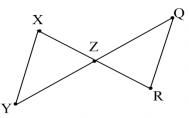
Prove: $\triangle ABC \cong \triangle ADC$



Statements	Reasons

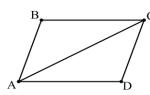
Example #12: Given: $XZ \cong RZ, YZ \cong QZ$

Prove: $\angle Y \cong \angle Q$



Statement	Reason
1.	1. Given
2.	2. If two angles are vertical, then they are congruent.
3.	3. SAS
4.	4.

Example #13: Given: $AB \cong CD, BC \cong DA$



Prove: $\angle B \cong \angle D$

Statement	Reason
1.	1. Given
2.	2.
3. $\triangle ABC \cong \triangle CDA$	3.
4. $\angle B \cong \angle D$	4.
washoeschools.net/DRHSmath	10

Geometry 4.4 Notes: ASA, AAS, and HL

Objectives:

- Students will be able to identify the postulate or theorem to prove congruent triangles
- Students will be able to prove congruent triangles in two-column proofs.

Exploration: Use the following link to explore triangles with two angles and one included side congruent: <u>https://www.geogebra.org/m/WKJJ2uPa</u>

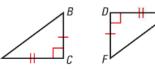
- Use the pink and blue sliders to change the angles of the first triangle.
- Use the black slider. See what happens!
- Make a **conjecture** ("guess") about two triangles with two angles and one included side congruent:

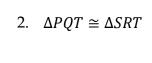
Included Side	If a side is two angles of a triangle, then that side is the Included Side. The included side is the shared side of the two triangles.	$\begin{bmatrix} D \\ Side \ \overline{DE} \ is included \ between \\ \angle D \ and \ \angle E \\ \end{bmatrix}$
Angle- Side- Angle Theorem (ASA)	If $2 \angle s$ and the included side of one Δ are \cong to $2 \angle s$ and the included side of another Δ , then the Δs are by ASA.	

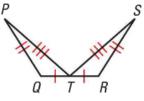
Ch 4 Notes: Triangles

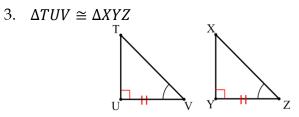
For #1 – 4: State the theorem or postulate that proves each pair of triangles congruent (SSS, SAS, or ASA). P = P = P = P

1. $\triangle ABC \cong EFD$

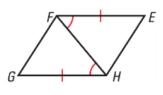








4. $\Delta FGH \cong \Delta HEF$

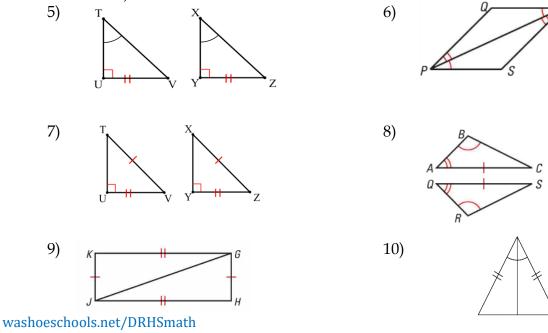


R

There are two other ways to prove triangles congruent:

Angle- Angle-Side Theorem (AAS)	If 2 \angle s and a non-included side of one \triangle are \cong to 2 \angle s and a non-included side of another \triangle , then the \triangle s are by AAS.	
Hypotenuse- Leg Theorem (HL)	If the hypotenuse and one leg of one right \triangle are \cong to the hypotenuse and the corresponding leg of another right \triangle , then the $\triangle s$ are by HL.	

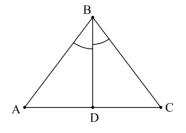
For #5 – 10: State the theorem or postulate that proves each pair of triangles congruent (SSS, SAS, ASA, AAS, or HL).



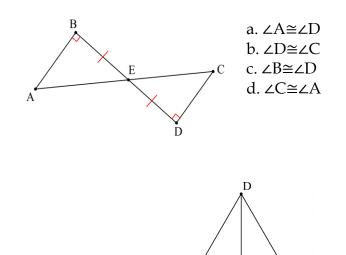
А

Geometry Example #11:

What additional information is needed to prove $\triangle ABC \cong \triangle CDE$ by ASA?



a. $\angle ABD \cong \angle CBA$ b. $\angle ADB \cong \angle CDB$ c. $\angle ABD \cong \angle CDB$ d. $\angle ABD \cong \angle BCD$



C

What additional information is needed to

You try! Example #12:

prove $\triangle ABE \cong \triangle CDE$ by AAS?

Given: $CB \cong AB$, $\angle 1$ and $\angle 2$ are right angles

Example #13:

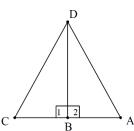
Prove: $\Delta BCD \cong \Delta BAD$

Statement	Reason
1.	1.
2.	2. If two angles are right angles, then they are \cong .
3.	3.
4.	4.

Example #14:

Given: $\angle A \cong \angle C$, $\angle 1$ and $\angle 2$ are right angles

Prove: $\triangle BCD \cong \triangle BAD$



В

Statement	Reason
1.	1.
2.	2. If two angles are right angles, then they are \cong .
3.	3.
4.	4.

Ch 4 Notes: Triangles

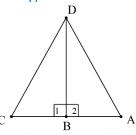
R

Reminder: If two segments are perpendicular (\perp), then they form right angles.

Example #15:

Given: $CD \cong AD$, $DB \perp AC$

Prove: $\triangle BCD \cong \triangle BAD$



Statement	Reason
1.	1.
2.	2. If segments are perpendicular, then they form right angles.
3.	3.
4.	4.

Example #16:

Given: $QP \cong RP$, $\angle T \cong \angle S$

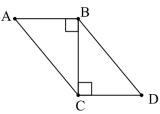
Prove: $\Delta TQP \cong \Delta SRP$

Statement	Reason
1.	1.
2.	2.
3.	3.

Example #17:

Given: $AC \cong BD$, $\angle ABC$ and $\angle DCB$ are right $\angle s$

Prove: $\triangle ABC \cong \triangle DCB$



Р

Statement	Reason
1.	1.
2.	2.
3.	3.

Geometry Example #18:

Given: $KN \parallel BD, \angle KMN \cong \angle MKL$

Ch 4 Notes: Triangles

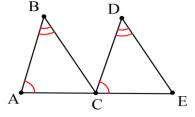
М

Prove: $\Delta KNM \cong \Delta MLK$

Statement	Reason
1.	1.
2.	2. If lines, then alternate interior angles are \cong .
3.	3.
4.	4.

Ν

Example #19: What additional information is needed to prove $\triangle ABC \cong \triangle CDE$ by AAS? D



a. $AC \cong DE$ b. $BC \cong DE$ c. $BA \cong CE$ d. $CB \cong CE$

Geometry 4.5 Notes: Isosceles and Equilateral Triangles

Objectives:

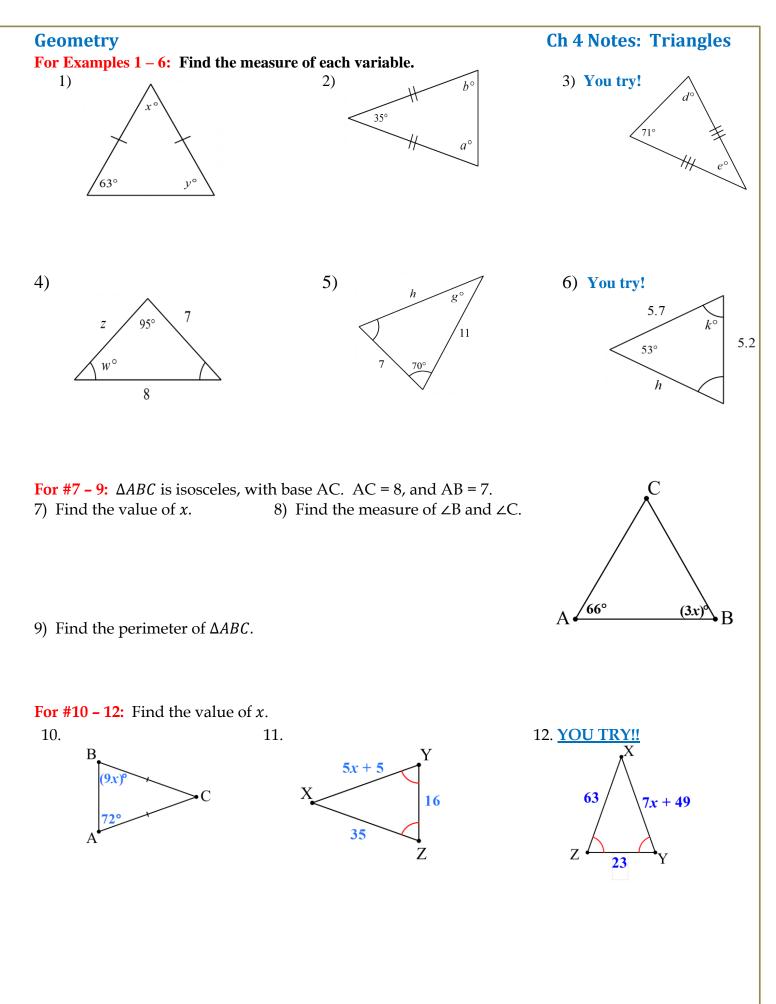
- Students will be able to find missing angles and sides in equilateral and isosceles triangles.
- Students will be able to classify triangles by side lengths when given coordinates of vertices.

Isosceles	An Isosceles Triangle has at least	vertex
Triangle	sides.	1 angle
Parts of an Isosceles Triangles	The two congruent sides are called the The other side is called the The angle included by the legs is called the The angles that have one side that is the base are called	base angles base

Exploration #1: Use the following link to explore parts of isosceles triangles: https://www.geogebra.org/m/mXXYSNZG

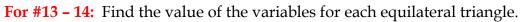
- Move the vertices around and pay attention to the measures of the sides and angles.
- Make a **conjecture** ("guess") about the measures of the base angles:

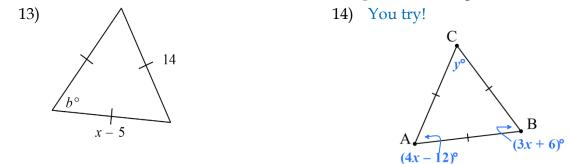
Isosceles Triangle Theorem	If two sides of a triangle are congruent, then the base angles opposite those sides are	If \bigwedge then \bigwedge
Converse of the Isosceles Triangle Theorem	If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	If \bigwedge then \bigwedge



Geometry		Ch 4 Notes: Triangles
Equilateral Triangle	A triangle is an Equilateral Triangle if all three sides are 	
Equilateral Triangle Theorem	If a triangle is equilateral, then it is	If then
Converse	If a triangle is equiangular, then it is	If then the

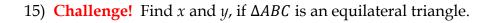
Explore: What is the measure of each angle of an equilateral triangle?





Also, what is the perimeter for #13?

В



For #16 – 18: Use the diagram shown below. 16) Find *x*.

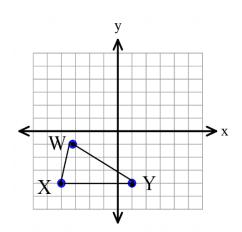
17) Find *y*.

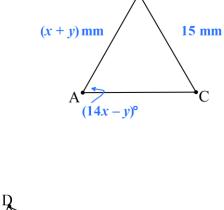
Geometry

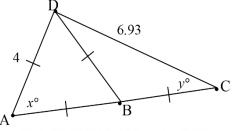


Example #19: Determine if ΔWXY is isosceles or not. Use the distance formula as needed. Show your work!

$$d=\sqrt{\left(x_{2}-x_{1}
ight)^{2}+\left(y_{2}-y_{1}
ight)^{2}}$$







Ch 4 Study Guide

- Triangle Sum Theorem: all three angles of a triangle will add to exactly 180°.
- Exterior Angle Theorem: the exterior angle of a triangle is equal to the sum of the two remote interior angles.
- CPCTC: If two triangles are congruent, then corresponding parts are congruent.
- Ways to prove triangles are congruent: SSS, SAS, ASA, AAS, or HL
- Reflexive Property: Any side (or angle) is congruent to itself.
- Vertical Angles: If two angles are vertical, then they are congruent.
- Midpoint: If a point is a midpoint, then it divides the segment into two congruent segments.
- Isosceles Triangles
 - Two sides (legs) are congruent.
 - The non-congruent side is called the base.
 - If two sides of a triangle are congruent, then the base angles are congruent.
 - If two angles of a triangle are congruent, then the sides opposite those triangles are congruent.
- Equilateral Triangles
 - All three sides are congruent.
 - All three angles are congruent (called "equiangular".)
 - Each angle has a measure of 60°.