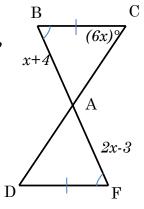
Name_____

1) Given $\triangle PQR \cong \triangle JKL$, PQ = 9x - 45, JK = 6x + 15, KL = 2x and JL = 5x, what is the value of x?

2) State the theorem to prove, $\triangle ABC \cong \triangle AFD$. What is the $m \angle D$?



3) Determine which statement is true, given that $\Delta CBX \cong \Delta SML$.

A)
$$\overline{MB} \cong \overline{SL}$$

C)
$$\angle X \cong \angle S$$

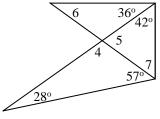
B)
$$\overline{XC} \cong \overline{ML}$$

D)
$$\angle XCB \cong \angle LSM$$

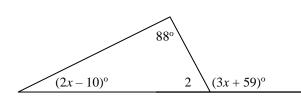
4) Classify $\triangle ABC$ with vertices A(-2, -1), B(-1, 3) and C(2, 0) as scalene, isosceles, or equilateral.

For #5-8, find the measure of each numbered angle.

- 6) *m*∠5
- 7) *m*∠6
- 8) *m*∠7

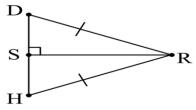


9) Solve for x and the measure of $\angle 2$.



10) Are the following triangles congruent? If so, write the congruence statement and state the theorem used to

prove the congruent triangles.

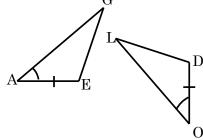


11) In the figure, $\angle GAE \cong \angle LOD$ and $\overline{AE} \cong \overline{DO}$. What information is needed to prove that $\triangle AGE \cong \triangle OLD$ by SAS ?

B.
$$\overline{AG} \cong \overline{OL}$$

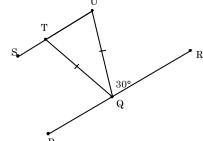
C.
$$\angle AGE \cong \angle OLD$$

D.
$$\angle AEG \cong \angle ODL$$

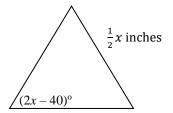


12) In the figure, $\overline{PR} \parallel \overline{SU}$ and $\overline{QT} \cong \overline{QU}$. What is the measure of $\angle STQ$?

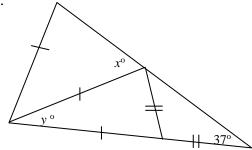
- A. 30°
- B. 120°
- C. 150°
- D. 165°



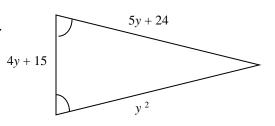
13) Find the perimeter of the equilateral triangle shown below.



14a) Find the measure of *x* and *y*.

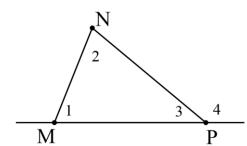


15) Find *y* and the perimeter of the triangle.



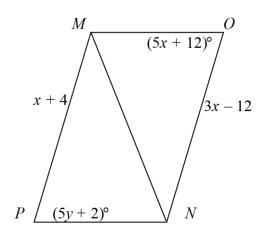
16)

Given $\triangle MNP$, Anna is proving $m \angle 1 + m \angle 2 = m \angle 4$. Which statement should be part of her proof?



- A. $m \angle 1 = m \angle 2$
- B. $m \angle 1 = m \angle 3$
- C. $m \angle 1 + m \angle 3 = 180^{\circ}$
- D. $m \angle 3 + m \angle 4 = 180^{\circ}$

17) In the figure, $\Delta MON \cong \Delta NPM$. Find the values of x and y.



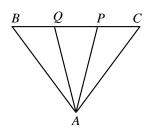
18)

Given the coordinates below for the three vertices of a triangle, which option can be proven to be an isosceles triangle?

- $A.\ P(a,b), Q(c,d), R\ (e,f)$
- B. P(0,0), Q(2a,0), R(a,b)
- $C.\ P(0,0), Q(a,b), R(2a,3b)$
- D. P(a,a), Q(b,b), R(c,c)

Given: $\angle B \cong \angle C$, $\overline{BP} \cong \overline{QC}$ 19)

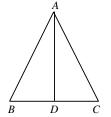
Prove: $\triangle BAP \cong \triangle CAQ$



REASONS STATEMENTS

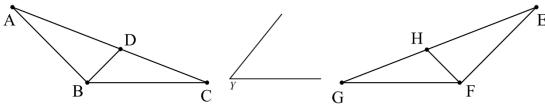
Given: $\overline{AD} \perp \overline{BC}$; \overline{AD} bisects < BAC20)

Prove: $\angle B \cong \angle C$



REASONS STATEMENTS

21)



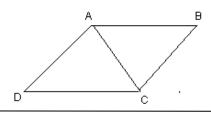
Given: $\triangle BDC \cong \triangle FHG$, $\angle A$ comp to $\angle Y$, $\angle E$ comp to $\angle Y$

Prove: $\triangle ABC \cong \triangle EFG$

STATEMENTS REASONS

22) **Given:** $\overline{AD} \parallel \overline{CB}, \overline{AB} \parallel \overline{CD}$

Prove: $\angle B \cong \angle D$

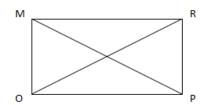


STATEMENTS

REASONS

Given: $\overline{MO} \perp \overline{OP}$, $\overline{RP} \perp \overline{OP}$, $\overline{MP} \cong \overline{RO}$

Prove: $\triangle MOP \cong \triangle RPO$



STATEMENTS

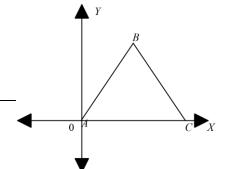
KEASONS

24) $\triangle RST$ has vertices R(4,1), S(2,5), T(-1,0). $\triangle CDF$ has vertices C(1,-3), D(-1,1), F(-4,-4). Prove or disprove that $\triangle RST \cong \triangle CDF$.

25) Prove or disprove that $\triangle ABC$ with vertices A(3, 7), B(2, -5), C(-8, -5) is isosceles.

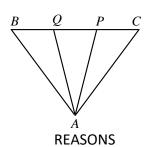
26) Find the coordinates of C if $\triangle ABC$ is isosceles with base AC.

A (0, 0), B $(6\sqrt{10}, 8)$, C (?, ?)



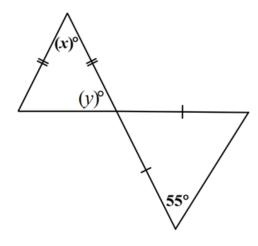
27) **Given:** $\Delta BAP \cong \Delta CAQ$

Prove: $\Delta BAQ \cong \Delta CAP$



STATEMENTS

28.) Find x and y using isosceles triangle properties.



ANSWER KEY

- 1) 20
- 2) AAS, 42°
- 3) D

- 4) Isosceles
- 5) 95
- 6) 85

- 7) 49 12) C
- 8) 53
- 9) x = 19, $\angle 2 = 64^{\circ}$
- 10) Yes, $\triangle DSR \cong \triangle HSR$ by HL.
- 11) B

- 13) 75 inches 18) B
- 14) x = 69, y = 32
- 15) y = 8 or -3; Perimeter = 175 or 21
- 16) D

17) x=8, y=10

19) Given: $\angle B \cong \angle C$, $\overline{BP} \cong \overline{OC}$ **Prove:** $\triangle BAP \cong \triangle CAQ$

CTATENAENITC

		3	IΑ	I EIV	ILI	V 1 2
1)	∠B	≅ ∠	∠ <i>C</i> ,	ВP	≅	QC

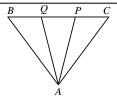
2) If \bigwedge , then \bigwedge

2) $\overline{AB} \cong \overline{CA}$ 3) $\Delta BAP \cong \Delta CAQ$

20)

3) SAS (1, 1, 2)

1) Given



- - Given: $\overline{AD} \perp \overline{BC}$; \overline{AD} bisects $\angle BAC$

Prove: $\angle B \cong \angle C$

STATEMENTS

REASONS

- 1) $\overline{AD} \perp \overline{BC}$; \overline{AD} bisects < BAC
- 2) ∠ADB and ∠ADC are rt ∠'s
- 3) $\angle ADB \cong \angle ADC$
- 4) ∠BAD ≅ ∠CAD
- 5) $\angle B \cong \angle C$

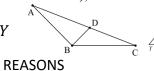
- 1) Given
- 2) If 2 seg. are perp. Then, they create rt \angle s.
- 3) If $2 \angle s$ are right $\angle s$, then they are congruent.
- 4) If a segment bisects an \angle , then it creates 2 congruent angles.
- 5) Third Angle Theorem

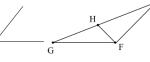
Note: can be done in 7 steps if using congruent triangles (reflexive and ASA), and then CPCTC.

Given: $\triangle BDC \cong \triangle FHG$, $\angle A$ comp to $\angle Y$, $\angle A$ comp to $\angle Y$ 21)

Prove: $\triangle ABC \cong \triangle EFG$

STATEMENTS

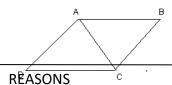




1) $\triangle BDC \cong \triangle FHG \angle A \ comp \ to \ \angle Y$, $\angle A \ comp \ to \ \angle Y$	1) Given
2)∠A ≅ ∠E	2) If 2 angles are comp to the same angle then they are \cong to eachother
3) $\overline{BC} \cong \overline{GF}$, $\langle BCD \cong \langle FGH \rangle$	3) CPCTC
$4) \Delta ABC \cong \Delta EFG$	4) AAS (2-3-3)

22) **Given:** $\overline{AD} \parallel \overline{CB}, \overline{AB} \parallel \overline{CD}$

Prove: $\angle B \cong \angle D$



STATEMENTS

- 1) $\overline{AD} \parallel \overline{CB}, \overline{AB} \parallel \overline{CD}$
- 2) $\angle DAC \cong \angle BCA$; $\angle DCA \cong \angle BAC$
- 3) $\angle B \cong \angle D$

1) Given

- 2) If parallel lines, then alt int ∠s are congruent.
- 3) Third ∠ Theorem

23) Given: $\overline{MO} \perp \overline{OP}$, $\overline{RP} \perp \overline{OP}$, $\overline{MP} \cong \overline{RO}$

Prove: $\triangle MOP \cong \triangle RPO$

STATEMENTS

REASONS

- 1) $\overline{MO} \perp \overline{OP}, \overline{RP} \perp \overline{OP}, \overline{MP} \cong \overline{RO}$
- 2) $\angle MOP$ and $\angle RPO$ are rt $\angle's$
- 3) $\overline{OP} \cong \overline{OP}$
- 4) $\Delta MOP \cong \Delta RPO$

- 1) Given
- 2) If 2 seg. are \bot , then they create 4 rt \angle .
- 3) Reflexive
- 4) HL (2, 1, 3)
- 24) Since all pairs of corresponding sides have the same length they are \cong . This makes $\triangle RST \cong \triangle CDF$ by SSS.
- 25) Since all sides have different lengths, no sides are \cong which makes $\triangle ABC$ scalene and not isosceles.
- 26) $C(12\sqrt{10},0)$
- 27) **Given:** $\Delta BAP \cong \Delta CAQ$ **Prove:** $\Delta BAQ \cong \Delta CAP$

$1. \Delta BAP \cong \Delta CAQ$	1. Given
$2. \angle ABP \cong \angle ACQ, \overline{AB} \cong \overline{AC}$	2. CPTCTC
$\angle BPA \cong \angle CQA$	
3. ∠CPA supp ∠BPA	3. If 2 angles form a linear pair, then they are supplementary angles
$\angle BQA$ supp $\angle CQA$	
$4. \angle CPA \cong \angle BQA$	4. If 2 angles are supp to $\cong \angle' s$, then they are \cong to eachother.
$5. \Delta BAQ \cong \Delta CAP$	5. AAS (2-4-2)

28)
$$x=40$$
, $y=70$