Algebra 1 Cl	h 8 Notes: Quadratics in Vertex Form	2020
--------------	--------------------------------------	------

Name Period

Day	Date	Assignment (Due the next class meeting)
Wednesday	2/26/20 (A)	8.1 Worksheet
Thursday	2/27/20 (B)	Simplifying and Multiplying Radicals
Friday	2/28/20 (A)	8.2 Worksheet
Monday	3/02/20 (B)	Graphing Quadratics in Vertex Form
Tuesday	3/03/20 (A)	8.3 Worksheet
Wednesday	3/04/20 (B)	Completing the Square
Thursday	3/05/20 (A)	8.4 Worksheet
Friday	3/06/20 (B)	Solving by Square Rooting
Monday	3/09/20 (A)	Ch 8 Practice Test
Tuesday	3/10/20 (B)	
Wednesday	3/11/20 (A)	Ch 8 Test
Thursday	3/12/20 (B)	Ch 8 Spiral Review Worksheet
Friday	3/13/20 (A)	Test Corrections, Test Redos
Monday	3/30/20 (B)	EOC Review, TBD

- Be prepared for daily quizzes.
- Every student is expected to do every assignment for the entire unit.
- Students with 100% HW completion at the end of the semester will be rewarded with a 2% grade increase. Students with no late or missing HW will get a free pizza lunch.

HW reminders:

- > If you cannot solve a problem, get help **before** the assignment is due.
- Extra Help? <u>Visit www.mathguy.us</u> or <u>www.khanacademy.com.</u>

Do you need a worksheet or a copy of the teacher notes?

8.1: Simplifying and Multiplying Radicals

Lesson Objectives

- 1. Simplify square roots and cube roots with numbers and variable.
- 2. Multiply two radical expressions.
- 3. Recognize powers of $\frac{1}{2}$ and $\frac{1}{2}$ to be square and cube roots, respectively.

WARM UP	n	n^2 (Perfect Squares)	n	n ² (Perfect Squares)	n	n² (Perfect Squares)
WARM UP Complete table	1	(6	3b	11	[2]
without a calculator.	2	4	7	49	12	144
	3	q	8	64	13	169
	4	16	9	8/	14	196
	5	۵۲	10	100	15	225
	n	n^3 (Perfect Cubes)	n	n³ (Perfect Cubes)		
	1	1	4	64		
	2	8	5	125		
	3	27	6	216		

Example 1: Simplify each expression.

$$1.\sqrt{49} = \sqrt{1.7}$$
$$= |7|$$

1.
$$\sqrt{49} = \sqrt{7.7}$$
 2. $\sqrt{64} = \sqrt{8.8}$ 3. $\sqrt{81} = \sqrt{9.9}$ 4. $\sqrt[3]{64} = \sqrt{9}$

$$5.\sqrt[3]{8}$$

6.
$$3\sqrt{16}$$

7.
$$-7\sqrt{25}$$

3.
$$5\sqrt{36}$$

5.
$$3\sqrt{16}$$
 7. $-7\sqrt{25}$ 8. $5\sqrt{36}$ 5. $6 = 30$

9. A square television set has an area of 144 square inches. Find the length of one side.

Ł

儿·人=144 1=144 1= 1144 = 12

Simplest Form of a Radical Expression: A radical expression is in simplest form if:

- a) no perfect squares are factors of the value inside the radical
- b) no radicals are in the denominator of a fraction.

Simplifying Radicals

Examples 10 - 16: Simplify each of the following redical expressions

- 10. $\sqrt{12} = \sqrt{2 \cdot 2 \cdot 3}$
- 11. √360

3

You try #13 - 15!

- 14. $\sqrt{600}$
 - \$100.6

- 15. $4\sqrt{8}$

Simplifying Radicals with Variables:

Challenge: 26) Simplify the expression: $-10a^2b \cdot \sqrt[3]{24a^3b^6}$ Assume all variables are positive.

$$-10a^2b \cdot 2ab^2 \sqrt[3]{3} = -20a^3b^3 \sqrt[3]{3}$$

Algebra 1

2020

Special Powers:

$$x^{\frac{1}{2}} = \sqrt{x}$$

$$x^{\frac{1}{3}} = \sqrt[3]{x}$$

For Examples 27 - 29, simplify each expression.

27)
$$98^{\frac{1}{2}} = \sqrt[3]{98}$$

28)
$$45^{\frac{1}{2}} = 545$$

29)
$$250^{\frac{1}{3}} = \sqrt[9]{250}$$

Multiplying Radicals

For Examples 30 - 35: Simplify each expression.

30)
$$\sqrt{3}(2\sqrt{3})$$

 $31)\sqrt{8\cdot 20} = \sqrt{160}$

You try! 33) $\sqrt{35 \cdot 21}$

$$= \sqrt{1.3} \sqrt{3.7}$$

$$= \sqrt{1.5} \sqrt{2.3} \sqrt{2}$$

$$= \sqrt{1.3} \sqrt{3}$$

Challenge: 36) Simplify: $-3x\sqrt{15x^2y^5} \cdot 2x^2y\sqrt{45xy^3}$ Assume all variables are positive.

8.2 Notes: Graphing Quadratics in Vertex Form

Lesson Objectives

- 1. Create a table of values for the parent function $y = x^2$
- 2. Graph quadratic functions in vertex form: $y = a(x h)^2 + k$
- 3. Identify the vertex, domain, range and transformations of quadratic functions.

Warm-Up: Graph each function. Identify the (h,k) point that you know is on the graph.

1)
$$y = \frac{1}{3}(x-1) + 2$$

LINEAR FUNCTION

2)
$$f(x) = 2|x+3| - 5$$

ABSOLUTE VALUE FUNTION

Quadratic Functions:

The Parent Function of the Quadratic: $y = x^2$

4° 2°

•	
x	$y = x^2$
-3	9
-2	4_
-1	$(-1)^2 = 1$
0	0=0.0=0
1	
2	4
3	9

y = |x| -2 -1 0 1 2 2 2

Exploration: Graph the following functions:

$$y = 2(x+1) - 3$$

$$y = 2|x + 1| - 3$$

$$y = 2(x+1)^2 - 3$$

How are they the same?

How are they different?

lett right

Graphing Vertex Form of a quadratic function: $y = a(x - h)^2 + k$ h will cause the parent function to $y = a(x - h)^2 + k$ k will cause the parent function to $y = a(x - h)^2 + k$

2^x - 4 8

www.washoeschools.net/DRHSmath

7

the

Algebra 1

Ch 8 Notes: Quadratics in Vertex Form

2020

Example 1: Sketch each quadratic function. Include the vertex.

a)
$$y = (x-1)^2$$

: $(1,0)$ highest / object

b)
$$f(x) = x^2 - 3$$

Transformation from $y = x^2$

Transformation from $y = x^2$

Lett 2 up 1 c) $g(x) = (x+2)^2 + 1$

Transformation from $y = x^2$ left 2, up 1

Domain: All reals Range: y=1

2) Sketch the graph of the quadratic function

Range:
$$y$$
, y , y .

Transformation from $y = x^2$

Does the function have a max or min?

Range:
$$y \ge -3$$

Transformation from $y = x^2$

Does the function have a max or min?

3) You try! Sketch the graph of the quadratic function

Reflections in the x-axis:

NOTE: Be sure to reflect at the proper time using PEMDAS

Examples #4 - 5: For the quadratic function, sketch the graph, and then find the requested information.

Examples #4 – 5:
4)
$$y = -(x - 3)^2$$

opens up or down)

Domain: all real #

Range: 4€0

Transformations

from $y = x^2$ flipin x-ais, right 3

You try! 5) $y = -x^2 + 4$

Opens up or down?

Domain: K

Range: y \(\frac{4}{7} \)
Transformations \(\frac{4}{7} \)

from $y = x^2$

Vertical Stretch/Compress for a Quadratic Function:

Examples 6-8: For each quadratic function, sketch the graph, and then find the requested information.

6)
$$y = 2(x-3)^2 - 5$$

Transformation from
$$y = x^2$$

structure 2, right 3, down 5

7)
$$y = \frac{1}{2}x^2 + 2$$

from
$$y = x^2$$

8)
$$y = -3(x+2)^2$$

from
$$y = x^2$$

Stretch 3, flip ow X-qxis

left 2

Exploration: DOES ORDER MATTER?

9) If $h(x) = x^2$ is reflected in the x-axis and then translated up 2 units, what would be its new graph and equation?

10) If $g(x) = x^2$ translated up 2 units and then is reflected in the x-axis, what would be its new graph equation?

Answer the question: Does the order of transformations matter?

Activity: Work with a partner to match each graph to its equation below.

11)
$$y = x^2 - 1$$

12)
$$y = -x^2 + 3$$

$$=-3x^2$$

$$14) \ y = -3x^2 \qquad \qquad \downarrow$$

15)
$$y = \frac{1}{3}x^2$$

16)
$$y = -\frac{1}{3}x^2$$

Examples 17-19: The number of mosquitoes is Anchorage, Alaska (in millions of mosquitoes) is a function of rainfall (in cm) is modeled by $m(x) = -(x-3)^2 + 5$, as shown in the graph below.

17) How many cm of rainfall would result in 4

million mosquitos?

18) What is the maximum number of mosquitos?

19) How many cm of rainfall would result in the maximum number of mosquitos?

20) Which statement(s) are true for $g(x) = x^2$ after the transformation g(x-4) s applied? Choose all that $= (\chi - \chi)^2$

A) g(x) is moved to the left 4 units.

B) g(x) is moved to the right 4 units.

g(x) is moved up 4 units.

D The range of the function is $y \le -4$. E) The domain of the function is all real numbers.

The maximum of the function is 4.

The minimum of the function is 0.

8.3: Completing the Square

Lesson Objectives

- 1. Complete the square to make a perfect square trinomial
- 2. Convert quadratic functions to vertex form by completing the square
- 3. Graph a quadratic function in vertex form and identify the min/max, domain, range, and vertex.

Trinomials that are Perfect Squares when factored:

Examples: Find the missing value that would make the trinomial a perfect square. Then factor each trinomial.

1)
$$x^{2} + 6x + 9$$

$$\frac{1}{1}(-|0) = -5$$

$$(x + \frac{3}{2})^2$$

$$(x - 5)^2$$

$$(x \downarrow \downarrow)^2$$

Completing the Square ~

is a process that allows us to

rewrite a quadratic equation from standard form $y = ax^2 + bx + c$ into vertex form, which is also known as $(h_1)(x)$ form: $y = a(x - h)^2 + k$. This will allow us to easily find the $(x - h)^2 + k$.

Steps for Completing the Square:

Examples 4 – 7: Complete the square to rewrite the equation in vertex form, and then identify the vertex.

(ou try! 5)
$$y = x^2 - 6x - 2$$

STRel
$$y = x^2 - 6x + 9 - 2 + -9$$

 $\frac{1}{2}(-6) = -3$

You try! 7)
$$y = -4x^2 - 8x + 13$$

Vertex Form of a Quadratic Function:

For Examples 8-12: Write each function in vertex form, and then sketch the function. Include the vertex. Identify the domain and range of each.

9) You try! $y = x^2 + 8x + 5$

Domain: MI rcw Range: y Z - 77

Domain:

Range:

Algebra 1

Ch 8 Notes: Quadratics in Vertex Form

2020

10)
$$y = -2x^{2} + 20x + 6$$

Step 1: $y = -2(x^{2} - 10x + \frac{15}{2}) + 6 + \frac{50}{2}$
 $y = -2(x^{2} - 10x + \frac{15}{2}) + 5$

11) You try! $y = 3x^2 - 18x - 2$

12: $y = -x^2 + 10x + 2$

Step 1: Factor out the negative!

$$y = -(x^2 - 10x + 25) + 2 + 25$$

$$y = -(x-5)^2+27$$

Vertex: (5,27) Domain:

Range:

Examples 13 - 14) A football is kicked in the air, and the height of the football can be modeled by the equation $y = -x^2 + 2x + 4$, where x is the number of seconds after the ball is kicked.

13) Find the maximum height of the football. Hint: Be sure to factor out the negative to start!

14) After how many seconds does the football reach its maximum height?

ALTERNATIVE APPROACH

Finding the vertex directly from standard form $y = ax^2 + bx + c$

Step 1: Calculate $x = -\frac{b}{2a}$

Step 2: Plug this x-value from step 1 into $y = ax^2 + bx + c$ to find y-value of vertex.

15) Use the alternative approach above to find the vertex of each quadratic.

a)
$$y = 3x^2 - 24x + 10$$
 compare your answer with Example 6

$$X = -\frac{b}{2\alpha} = \frac{-(-24)}{3(3)} = \frac{4}{4}$$

$$y = 3(\frac{4}{1})^2 - 24(\frac{4}{1}) + 10 = \frac{38}{1}$$

b) $y = x^2 - 18x + 4$ compare your answer with Example 8

$$x = -\frac{b}{2a} = -\frac{(-18)}{241} = 9$$

You try! Use the alternative approach above to find the vertex of each quadratic.

c)
$$y = -4x^2 - 8x + 13$$
 compare your answer with Example 7

d)
$$y = x^2 + 8x + 5$$
 compare your answer with Example 9

$$X = -\frac{b}{2a} = -\frac{8}{2(1)} = -\frac{4}{3}$$

8.4 Notes: Solving Quadratics by Square Rooting

Lesson Objectives

- 1. Solve basic quadratic equations by taking square roots of each side of an equation.
- 2. Find x-intercepts (roots, solutions) to quadratic functions by setting y = 0.

Warm Up:

1) When a number is squared, the result is 25.

What could the original have as its value?

(Hint: there are two answers.)

2) If
$$\frac{3}{5}w = \frac{4}{3}$$
, what is the value of w ?

Solving Quadratics by Square Rooting

*Use this strategy when a function is in vertex form, or if there is not a b term.

- Step 1: ISOLATE the variable or variable expression squared (variable $\pm h$)² by using inverse operations.
- . PLUS OR MINUS! Simplify radical answers.
- Note: When a variable or () is isolated, it cannot equal a ______ number. (If it does, then there is no solution.)
- We can have ______ solution, ______ solution, or _____ solutions.

Examples 1-3: Solve each equation for the variable by square rooting.

1)
$$z^{2}-5=4$$
 $z^{2}=9$
 $z^{2}=+59$
 $z^{2}=+3$

You try #4 - 6! Solve each equation for the variable by square rooting.

4)
$$-3x^2 + 4 = -23$$

- 4 - 4

5)
$$4t^2 + 17 = 17$$

6)
$$4p^2 + 8 = 0$$

 $4p^2 = -8$
 $p^2 = -2$

Example 8: Solve for *a*: $4(a-3)^2 - 8 = 0$

www.washoeschools.net/DRHSmath

Algebra 1

Ch 8 Notes: Quadratics in Vertex Form

Example 9: Pick one of the following problems to find the solutions. The problems go in order from easiest to more challenging from left to right.

a)
$$2x^{2}-7=-9$$
 $+7+7$
 $2x^{2}=-2$

b)
$$3(m-4)^2 = 12$$

(m-4)² = 4

$$4(a-3)^{2}-40=-20$$

$$4(a-3)^{2}-40=-20$$

$$4(a-3)^{2}=20$$

$$4(a-3)^{2}=20$$

$$2x^{2} = -2$$
 $x^{2} = -1$
 $x^{3} = -1$
 $x^{3} = -1$

$$(m-4)^{2} = 4$$

 $(m-4)^{2} = 4$
 $m-4=\pm 1$
 $m-4=\pm 1$
 $m=4\pm 1$

Examples 10 - 11: Solve each equation for the variable. Simplify any radical answers.

10)
$$3x^2 - 8 = 28$$

11)
$$-2x^2 + 14 = -34$$

Algebra 1

Ch 8 Notes: Quadratics in Vertex Form

2020

Example 12: Find the zeros (x-intercepts) of $f(x) = 3x^2 - 9$, if possible. If needed, write your answer as a simplified radical. Then draw a sketch of the quadratic function. Include the roots (x-intercepts) and vertex.

$$y = 3x^{2} - 9$$

 $0 = 3x^{2} - 9$
 $9 = 3x^{2}$

Example 13: Find the roots (x-intercepts) of $f(x) = 2(x-3)^2 - 8$, if possible. If needed, write your answer as a simplified radical. Then draw a sketch of the quadratic function. Include the vertex and x-intercepts.

$$0 = 2(x-3)^{2} - 8$$

$$8 = 2(x-3)^{2}$$

$$2$$

Example 14: Find the x-intercepts for *one* quadratic function below. The options go from easiest to hardest.

a)
$$y = x^2 - 25$$

b)
$$f(x) = -3x^2 + 12$$

c)
$$g(x) = 5(x-1)^2 - 20$$

$$35 = \chi^{2}$$

$$\sqrt{25} = \chi$$

$$\pm 5 = \chi$$

$$0 = -3x^{2} + 17$$

$$-12 = -17$$

$$-12 = -3x^{2}$$

$$-3 = -3x^{2}$$

$$-3 = -3x^{2}$$

$$-3 = -3x^{2}$$

Example 15: Consider the function $f(x) = 3x^2 + 27$.

- a) What is the vertex for this function? (0127)
- b) Will this function open up or down?

c) Draw a sketch of this function. What do you notice about the x-intercepts?

d) Solve f(x) for the zeros (x-intercepts.) Does your solution support your conclusion from part

$$-51 = 3x^{2} + 51$$

Example 16: What is true for the function $f(x) = -3(x-2)^2 - 9$? Select all that apply.

- (A) The range is $y \le -9$.
- B) The vertex is at (-2, -9). $\left(2, 9 \right)$
- The function opens downward.
- D) The x-intercepts are at $2 \pm \sqrt{3}$. \neq \(\begin{aligned} \none \emptyset{\text{none}} \emptyset{\text{none}} \emptyset{\text{none}} \emptyset{\text{none}}
- E) There are no x-intercepts.

Ch 8 Study Guide

Graphing Quadratics

Form	What it tells us	Read about it in your notes!
Vertex Form	• Vertex at (h, k)	Section 8.2
$y = a(x - h)^2 + k$	Domain is all real numbers	
	• Opens up if a is positive (range is $y > k$)	
	• Opens down if a is negative (range is $y < k$)	
	• Vertical stretch if $ a > 1$	
	• Vertical compression of $0 < a < 1$	Section 8.4
	• Find the <i>x</i> -intercepts by setting the function equal to 0, and solve by square rooting.	
Standard Form	• Complete the square to put into vertex form.	Section 8.3
$y = ax^2 + bx + c$	• Once the function is in vertex form, you can find the vertex by looking for (h, k) .	
	• Alternative approach:	
	• Step 1: Calculate $x = -\frac{b}{2a}$	
	• Step 2: Plug this x-value from step 1 into $y = ax^2 + bx + c$ to find y-value of vertex.	

Solving Quadratic Equations

Technique	Hints and Steps	Read about it in your notes!
Solving by Square	• Isolate $variable^2$ or $(variable \pm h)^2$	Section 8.4
Rooting	• Square root each side - use (±).	
$0 = a(x-h)^2 + k$	Simplify any radicals.	
$0 = ax^2 + c$		

$$X^2 + 3x = 10$$