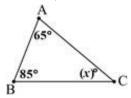
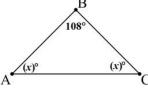
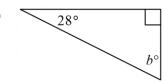

Ch 4 Calendar		
Date	Day	Assignment (Due the next class meeting)
11/06/23	Monday (A)	Notes: 4.1 Notes
11/07/23	Tuesday (B)	HW: 4.1 Worksheet
11/08/23	Wednesday (A)	Notes: 4.2 Notes
11/09/23	Thursday (B)	HW: 4.2 Worksheet
11/13/23	Monday (A)	Notes: 4.3 Notes
11/14/23	Tuesday (B)	HW: 4.3 Worksheet
11/15/23	Wednesday (A)	Notes: 4.4 Notes
11/16/23	Thursday (B)	HW: 4.4 Worksheet
11/17/23	Friday (A)	Notes: 4.5 Notes
11/20/23	Monday (B)	HW: 4.5 Worksheet
11/21/23	Tuesday (A)	In class: review for test (next class!)
11/27/23	Monday (B)	HW: Ch 4 Review Wk
11/28/23	Tuesday (A)	Ch 4 Test
11/29/23	Wednesday (B)	HW: None! 😊


HW Hints:

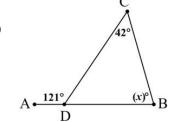
- > Check your answers, and view solutions for your corrections at www.washoeschools.net/DRHSmath
- Check out our class YouTube channel: https://www.youtube.com/channel/UCh9fLvgw9metmOuIb6vO5Zw
- > Show all work and draw the diagrams for each problem.
- > Students who complete every assignment this semester will get a 2% bonus.

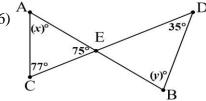


For #1 - 10, find the variable(s) for each diagram.

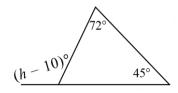

1)

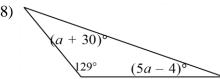
2)

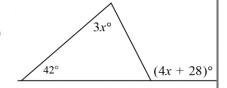

3)



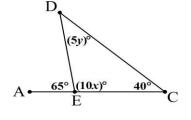
4)




5)

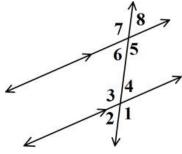


7)

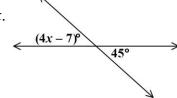


9)

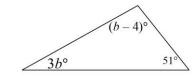
10)



11)Using the diagram from #10, find the measure of $\angle D$.


12) $\angle A$ is supplementary to $\angle B$. $m\angle A = (7x - 4)^\circ$ and $m\angle B = (3x + 6)^\circ$. Find the value of x.

13) From #12, find $m \angle B$.


14) Use the diagram shown below. Given that $m \angle 5 = (4x)^{\circ}$ and $m \angle 4 = (2x + 30)^{\circ}$ Find x and $m \angle 8$.

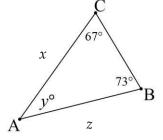
15) Find *x*.

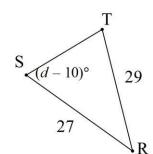
16)

4.2 Worksheet

For #1 – 4, given the congruence statement $\Delta FGH \cong \Delta WND$, then complete each statement:

1) $\angle H \cong ?$

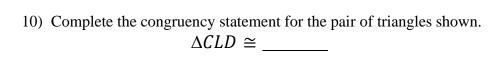

2) $WN \cong ?$

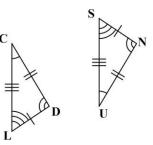

3) $FH \cong ?$

 $4) \angle N \cong ?$

For #5 – 8, given that $\triangle ABC \cong \triangle RTS$, then find each variable.

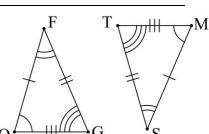
6) y


7) z


8) d

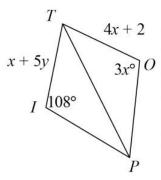
9) Given that PQ \cong EF, $\angle R \cong \angle D$, and $\angle Q \cong \angle F$ then which options below show a correct congruence statement? Select all that apply.

- A) $\triangle PQR \cong \triangle EFD$
- B) $\Delta DEF \cong \Delta RPQ$
- C) $\triangle QPR \cong \triangle FDE$


- D) $\Delta FDE \cong \Delta QRP$
- E) $\triangle PQR \cong \triangle DEF$

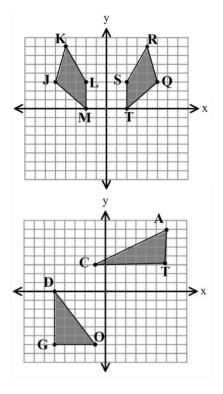
11) Using the figure below, complete the congruency statement and identify all corresponding angles and Congruency Statement: $\Delta GFO \cong$ sides.

- a. $\overline{TM} \cong \underline{\hspace{1cm}}$
- d. ∠0 ≅ _____
- b. $\overline{SM} \cong \underline{\hspace{1cm}}$ f. $\angle T \cong \underline{\hspace{1cm}}$
- c. *TS*≅ _____
- g. ∠*F* ≅ _____

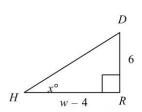

4.2 Worksheet continued on next page...

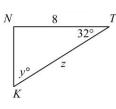
4.2 Worksheet, continued...

For #12 – 14: In the diagram, $\triangle TIP \cong \triangle TOP$. $m \angle ITP = 22^{\circ}$. Show all work!


12) Find the value of x.

13) Find the value of y.


14) Find $m \angle TOP$.

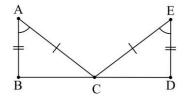

- 15) Using the diagram shown, are the shapes congruent? If so, what transformation maps JKLM onto QRST?
 - A) No, the shapes are not congruent.
 - B) Yes, rotation 90 degrees clockwise about the origin.
 - C) Yes, translation along the vector $\langle 4, 0 \rangle$.
 - D) Yes, reflection in the y-axis.
 - E) Yes, reflection in the *x*-axis.
- 16) Using the diagram shown, are the triangles congruent? If so, what transformation maps ΔCAT onto ΔDOG ?
 - A) No, the triangles are not congruent.
 - B) Yes, 90 degree clockwise rotation about the origin.
 - \boldsymbol{C}) Yes, 180 degree clockwise rotation about the origin.
 - D) Yes, reflection in the *x*-axis.
 - E) Yes, translation along the vector $\langle -4, -3 \rangle$.

For 17 - 20, use the diagram shown, where $\triangle DRH \cong \triangle KNT$.

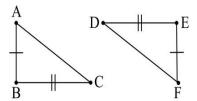
- 17) Find *x*.
- 18) Find y.

- 19) Find w.
- 20) Find *z*.

Bonus: Find the perimeter of ΔDRH .

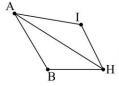

Geometry 4.3 Worksheet

Ch 4 HW Packet


Name

For #1 - 3, use the diagram shown.

- 1) Are the triangles congruent?
- 2) If so, then complete the congruence statement: $\triangle ABC \cong \triangle$ _
- 3) If so, which postulate shows the triangles are congruent: SSS or SAS?


- 4) **Multiple Choice:** Which statement below is true for the triangles shown?
 - A) $\triangle ABC \cong \triangle FED$ by SSS.
 - B) $\triangle ABC \cong \triangle FED$ by SAS.
 - C) There is not enough evidence to prove congruent triangles.

For #5-7, use the diagram to complete the proof.

Given: $AB \cong AI$ and $BH \cong IH$

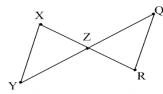
Prove: $\triangle ABH \cong \triangle AIH$

Statements		Reasons
1) $AB \cong AI$ and $BH \cong IH$	1)	#5)
$2) AH \cong AH$	2)	#6)
$3) \Delta ABH \cong \Delta AIH$	3)	#7)

For #8-10, use the diagram to complete the proof.

Given: $AB \cong AC$ and $\angle BAD \cong \angle CAD$

Prove: $\triangle ABD \cong \triangle ACD$

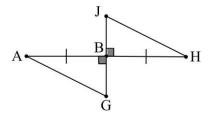


Statements	Reasons
1) $AB \cong AC$ and $\angle BAD \cong \angle CAD$	1) #8)
$2) AD \cong AD$	2) #9)
$3) \Delta ABD \cong \Delta ACD$	3) #10)

For # 11 – 14, use the diagram to complete the proof.

Given: $XZ \cong RZ$, $YZ \cong QZ$

Prove: $XY \cong RQ$

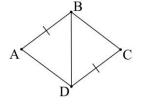


Statement	Reason
$1. XZ \cong RZ, YZ \cong QZ$	1. #11
2. #12	2. If two angles are vertical, then they are congruent.
$3. \Delta XYZ \cong \Delta RQZ$	3. #13
4. <i>XY</i> ≅ <i>RQ</i>	4. #14
	1.2 continued on the next need

4.3 continued on the next page...

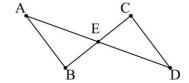
4.3 Worksheet, continued...

- 15) **Multiple Choice:** What additional information is required in order to prove the triangles shown are congruent by SAS?
 - A) $\angle G \cong \angle A$
- B) $\overline{AB} \cong \overline{GB}$
- C) $\overline{JB} \cong \overline{GB}$
- D) $\overline{AG} \cong \overline{HJ}$


16) What additional information is required in order to prove $\triangle ABD \cong \triangle CDB$ are congruent by SSS?

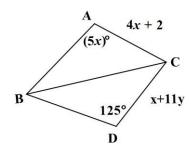
$$A. \angle C \cong \angle A$$

$$B. \overline{\mathit{AD}} \cong \overline{\mathit{BD}}$$


$$C. \angle C \cong \angle B$$

$$D.\overline{AD} \cong \overline{BC}$$

For #17 - 18, use the diagram to complete the proof.

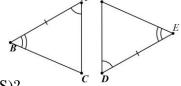

Given: $AE \cong ED$, $BE \cong EC$ Prove: $\triangle ABE \cong \triangle DCE$

Statement	Reason
1. $AE \cong ED, BE \cong EC$	1. Given
$2. \ \angle AEB \cong \angle DEC$	2. #17
$3. \ \Delta ABE \cong \Delta DCE$	3. #18

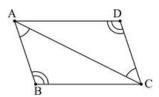
For #19 – 21: In the diagram, $\triangle ABC \cong \triangle DBC$. $m \angle DBC = 35^{\circ}$. Show all work!

19) Find the value of x.

- 20) Find the value of y.
- 21) Find $m \angle A$.

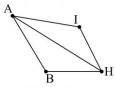

Geometry 4.4 Worksheet

Ch 4 HW Packet


Name

For #1 - 3, use the diagram shown to the right.

- 1) Are the triangles congruent?
- 2) If so, then complete the congruence statement: $\triangle ABC \cong \triangle$
- 3) If so, which theorem or postulate could prove this (SSS, SAS, ASA, or AAS)?


- 4) **Multiple Choice:** Which statement below is true for the triangles shown?
 - A) $\triangle ABC \cong \triangle DCA$ by ASA.
 - B) $\triangle ABC \cong \triangle DCA$ by AAS.
 - C) $\triangle ABC \cong \triangle CDA$ by ASA.
 - D) $\triangle ABC \cong \triangle CDA$ by AAS.

For #5-7, use the diagram to complete the proof.

Given: $\angle B \cong \angle I$ and $\angle BAH \cong \angle AHI$

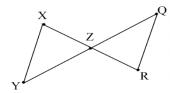
Prove: $\triangle ABH \cong \triangle HIA$

Statements	Reasons
1) $\angle B \cong \angle I$ and $\angle BAH \cong \angle AHI$	1) #5)
$2) AH \cong AH$	2) #6)
$3) \Delta ABH \cong \Delta HIA$	3) #7)

For #8-10, use the diagram to complete the proof.

Given: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

Prove: $\triangle ABD \cong \triangle ACD$



Statements	Reasons	
1) $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$	1)	#8)
2) #9	2)	Reflexive Property
$3) \Delta ABD \cong \Delta ACD$	3)	#10)

For # 11 – 14, use the diagram to complete the proof.

Given: $XZ \cong RZ$, $\angle X \cong \angle R$

Prove: $XY \cong RQ$

Statement	Reason
$1. XZ \cong RZ, \angle X \cong \angle R$	1. #11
2. #12	2. If two angles are vertical, then they are congruent.
$3. \Delta XYZ \cong \Delta RQZ$	3. #13
4. <i>XY</i> ≅ <i>RQ</i>	4. #14

4.4 continued on the next page...

4.4 Worksheet, continued...

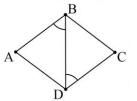
15) What additional information is required to prove that $\triangle ABG \cong \triangle HBJ$ by HL?

A)

$$A. \angle G \cong \angle A$$

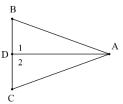
 $C. \overline{BB} \cong \overline{GB}$

B.
$$\overline{AB}$$
 ≅ \overline{GB}


16) What additional information is required to prove that $\triangle ABD \cong \triangle CDB$ by AAS?

$$A. \angle C \cong \angle A$$

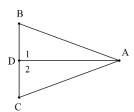
$$B.\overline{AD} \cong \overline{BD}$$


$$C. \angle C \cong \angle ABD$$

$$D. \overline{AD} \cong \overline{BC}$$

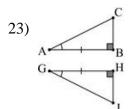
For #17 - 19, use the diagram to complete the proof.

Given: $AD \perp BC$; $AB \cong AC$ Prove: $\triangle ABD \cong \triangle ACD$

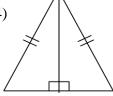


Statement	Reason
$1. AD \perp BC; AB \cong AC$	1. Given
2. #17	2. If ⊥ segments, then right angles are created.
$3. \ \overline{AD} \cong \ \overline{AD}$	3. #18
$4. \Delta ABD \cong \Delta ACD$	4. #19

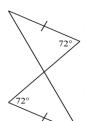
For # 20 - 22, use the diagram to complete the proof.

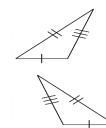

Given: $\angle 1 \cong \angle 2$, *D* is the midpoint of \overline{BC}

Prove: $\triangle ABD \cong \triangle ACD$

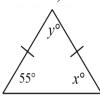


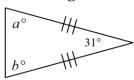
Statement	Reason
1. $\angle 1 \cong \angle 2$, <i>D</i> is the midpoint of \overline{BC}	1. Given
2. #20	2. If a point is a midpoint, then it divides a segment into two congruent segments.
3. #21	3. Reflexive Property
$4. \Delta ABD \cong \Delta ACD$	4. #22

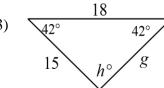

For #23-26, what theorem or postulate could be used to show the triangles are congruent? Choose from SSS, SAS, ASA, AAS, or HL.



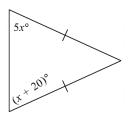
25)

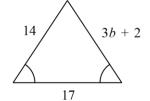


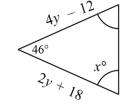

26)

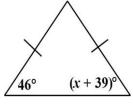

For #1-12, find the value of the variable(s) for each diagram.

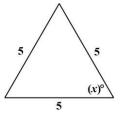
1)

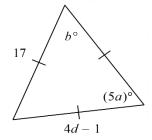


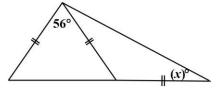

3)


4)

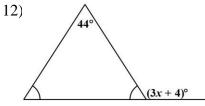

5)


6)


7)

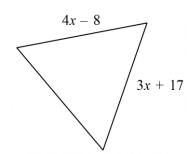

8)

9)



10)

11)



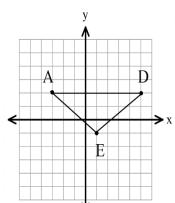
4.5 continued on the next page...

4.5 Worksheet, continued...

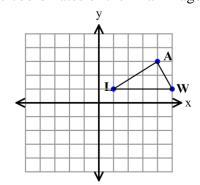
For #13 - 14, the triangle shown to the right is equilateral.

13) Find *x*.

- 14) What is the perimeter of the triangle?
- **Multiple Choice:** In the figure $\angle GAE \cong \angle LOD$ and $AE \cong OD$. What information is needed to prove 15. that $\triangle AGE \cong \triangle OLD$ by SAS?


A.
$$\overline{GE} \cong \overline{LD}$$

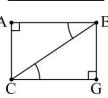
B.
$$\overline{AG} \cong \overline{OL}$$

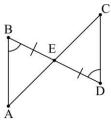

C.
$$\angle AGE \cong \angle OLD$$

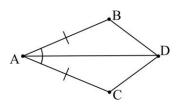
D.
$$\angle AEG \cong \angle ODL$$

16) Classify $\triangle ADE$ as isosceles or equilateral. Use the distance formula to justify your answer.

clockwise about the orign, and then is translated along the vector $(x, y) \rightarrow (x-2, y+4)$. What are $d = \sqrt{\left(x_2 - x_1
ight)^2 + \left(y_2 - y_1
ight)^2}$ the coordinates of the final image A''?

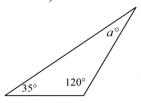

17) In the diagram below, A is rotated 90°

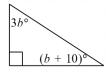

For #18 – 20: Using the congruent triangles shown, complete the congruence statement. Then provide the reason why each pair of triangles are congruent. Choose from SSS, SAS, ASA, AAS, or HL.

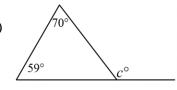

18)
$$\triangle ABC \cong \triangle$$

19)
$$\triangle ABE \cong \triangle$$

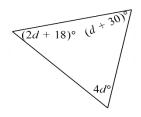
20)
$$\triangle ABD \cong \triangle$$

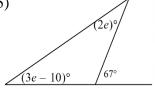


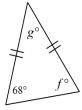


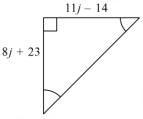

For #1 - 9, find the value of the variable for each diagram.

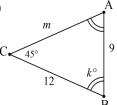
1)

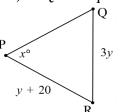



3)


4)


5)


6)


7)

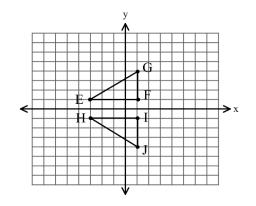
8)

9) ΔPQR is equilateral.

- 10) From #8, find the perimeter of $\triangle ABC$.
- 11) From #9, find the perimeter of ΔPQR .

For #12 – 13: Use the graph shown to the right, where $\triangle EGF \cong \triangle HJI$.

- 12) What transformation maps ΔEGF onto ΔHJI ?
- A) reflection
- B) translation
- C) rotation
- 13) Which corresponding parts are congruent? Fill in the blanks.

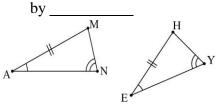


$$\overline{EF} \cong \underline{\hspace{1cm}} \angle E \cong \underline{\hspace{1cm}}$$

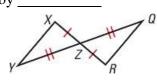
$$\overline{EG} \cong \underline{\hspace{1cm}}$$

$$\overline{EG} \cong \underline{\qquad} \angle G \cong \underline{\qquad}$$

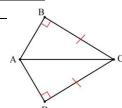
$$\overline{GF} \cong \underline{\hspace{1cm}}$$

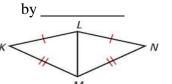


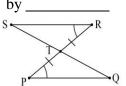
Ch 4 Rev Wk continued on the next page...

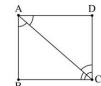

Ch 4 Review Worksheet, continued...

For #14-19, complete the congruent statement, and supply the theorem or postulate that proves the triangles are congruent. Choose from SSS, SAS, ASA, AAS, or HL.

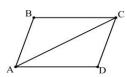

14) $\Delta MAN \cong \Delta$


15) $\Delta XYZ \cong \Delta$ by


16) $\triangle ADC \cong \Delta$

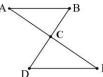

17) $\Delta KLM \cong \Delta$

18) $\Delta RST \cong \Delta$



19) $\triangle ADC \cong \Delta$

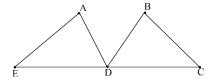
For #20 - 26, complete each proof.


Given: $AB \cong CD$, $BC \cong DA$ **Prove:** $\triangle ABC \cong \triangle CDA$

StatementReason $1. AB \cong CD, BC \cong DA$ 1. Given2. #202. Reflexive Property $3. \Delta ABC \cong \Delta CDA$ 3. #21

Given: $AB \cong ED$, $\angle A \cong \angle E$

Prove: $\triangle ACB \cong \triangle ECD$



Statement	Reasons
1) $AB \cong ED, \angle A \cong \angle E$	1) Given
$2) \angle ACB \cong \angle ECD$	2) #22
3) $\triangle ACB \cong \triangle ECD$	3) #23

Given: D is midpoint of CE $ADE \cong \angle BDC$

and $AD \cong BD$.

Prove: $AE \cong BC$

Statement	Reasons
1) D is midpoint of CE, $AD \cong BD$, $\angle ADC \cong \angle BDE$	Given
2) # 24	2) If a point is a midpoint, then it divides the segment into two congruent segments.
$3) \Delta ADE \cong \Delta BDC$	3) #25
4) $AE \cong BC$	4) #26