2.1 Worksheet

Algebra 2

Name:

For #1 – 10 use the matrices: $A = \begin{bmatrix} 5 & 0 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 8 \\ -5 & 10 \end{bmatrix}$, $C = \begin{bmatrix} 3.2 & 1 \\ -1.5 & 0 \end{bmatrix}$. 1. A + B2. A - B3. C + A

4.
$$B - C$$
 5. $2A$ 6. $5A$

7. – C	8. $-3A + B$	9. $A + B + 2C$

11. $B + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	
	11. $B + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

For	#12	-13,	find	the	missi	ng	values:
	г	E	77 1	21	Гт	· ·	D F O

	[5	z + 3		[a + 3	-50]
12.	-1	2	=	b-8	2 + c
	9 + x	y _		l 15	2.5

13.
$$3\begin{bmatrix} 5 & x+1 & 6\\ y-3 & z & 2 \end{bmatrix} = \begin{bmatrix} 15 & 24 & 18\\ 21 & 0 & 6 \end{bmatrix}$$

For #14-16, find the missing values:

14.	8 <i>b</i> + 2 10 - <i>x</i>	$\begin{vmatrix} z - 1 \\ 3 + c \\ v + 1 \end{vmatrix} =$	$\begin{vmatrix} a-1\\-8\\8 \end{vmatrix}$	-5 2 5.5	15. $2\begin{bmatrix} 7.5\\ y+7 \end{bmatrix}$	2x-2 4z	$\begin{bmatrix} 6\\5 \end{bmatrix} = \begin{bmatrix} 15\\2 \end{bmatrix}$	20 20	12 10
	LIO V	<i>y</i> ' 1	LO	2.21					

16. $[3 \ 2 \ x] - 2[y \ z - 5 \ 10] = [-1 \ 14 \ -8]$

17. In the price matrix *P*, the rows represent prices for sweatshirts and sweatpants. The columns represent the color scheme of the items: white, red, and tie-dye. If the sales tax rate is 7%, find the sales tax of each item. $P = \begin{bmatrix} 30 & 40 & 50 \\ 25 & 35 & 55 \end{bmatrix}.$ 2.2 Worksheet

Algebra 2

For #1 - 7 use the matrices to find the dot product, or if it is not possible to multiply them, tell why.

$$A = \begin{bmatrix} 8 & 7 & -4 \\ 1 & -4 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} -9 & -7 \\ -2 & 2 \\ 10 & 9 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & -5 \\ -2 & 8 \end{bmatrix}, \quad D = \begin{bmatrix} -10 \\ 1 \\ 7 \end{bmatrix}, \quad E = \begin{bmatrix} 10 & -5 & -5 \end{bmatrix}$$

1. $A \cdot B$
2. $B \cdot A$
3. $A \cdot C$

4. $B \cdot C$

5.
$$C \cdot D$$

6. $D \cdot E$

7. <i>E</i> · <i>D</i>	8. Find IQ , if $I = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ and $Q =$	$\begin{bmatrix} 1\\ -4\\ 9 \end{bmatrix}$	-3 5 -7	2 -6 8	
------------------------	---	-------------	---	--	---------------	--------------	--

11. Raul owns and operates two souvenir stands. At his baseball park stand, sweatshirts cost \$45 and T-shirts cost \$20. At his football stadium stand, sweatshirts cost \$50 and T-shirts cost \$15. Today Raul sold 20 sweatshirts and 25 T-shirts at each stand. Use matrix multiplication to find the total amount in daily sales at each souvenir stand.

For #12-13: A drama teacher assigns final grads in her class based on the weighted system si	hown	belov	w.
tests	[90	83	78]
The matrix G represents the grades for Kiyo and his two friends, Rachel and Leo. $G = proj$	94	88	96
part	98	94	89]

12. Write matrix W as a 1x3 matrix to represent the weighted grading system.

Drama Syllabus Tests 45% Projects 30% Participation 25%

13. Perform matrix multiplication to find the final grades for each of the three students.

For 1 - 5, find the determinants of the following matrices, or if it's not possible, explain why:

1.
$$\begin{bmatrix} -8 & -9 \\ 5 & -10 \end{bmatrix}$$
 2. $\begin{bmatrix} -2 & -4 \\ 10 & -10 \end{bmatrix}$

5.
$$\begin{bmatrix} -9 & 10 & -6 \\ -2 & -8 & -5 \\ 7 & -3 & 2 \end{bmatrix}$$

For #6-10, Does each given matrix have an inverse? If so, find it.

$$6. P = \begin{bmatrix} 1 & -3 \\ -1 & 4 \end{bmatrix} 7. R = \begin{bmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{bmatrix} 8. Q = \begin{bmatrix} -6 & -9 \\ -4 & -6 \end{bmatrix}$$

9.
$$S = \begin{bmatrix} -24 & 18 & 5\\ 20 & -15 & -4\\ -5 & 4 & 1 \end{bmatrix}$$
 10. Are $\begin{bmatrix} 8 & 4\\ 4 & -2 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{16} & \frac{1}{8}\\ \frac{1}{8} & -\frac{1}{4} \end{bmatrix}$ inverses? Explain how you know.

Algebra 2

Name:_____

For #1-2, Solve the matrix $A \cdot X = B$ for the following matrices:

1.
$$A = \begin{bmatrix} 8 & -7 \\ -6 & 4 \end{bmatrix}, B = \begin{bmatrix} 11 \\ -12 \end{bmatrix}$$

2. $A = \begin{bmatrix} 2 & 8 & 4 \\ 1 & -1 & -3 \\ -3 & 2 & -9 \end{bmatrix}, B = \begin{bmatrix} 26 \\ -2 \\ 37 \end{bmatrix}$

For #3-6, Rewrite each system as a Matrix equation, then solve using inverse matrices, if possible.

3. $\begin{cases} -x + 2y = 8\\ -3x + 6y = -12 \end{cases}$	4. $\begin{cases} x + 2y + 3z = -8 \\ 3x - 2y + z = -1 \\ x + y - 2z = 6 \end{cases}$
---	---

5.
$$\begin{cases} -3x + 4y = -4 \\ \frac{1}{2}x - 3y = -11 \end{cases}$$
6.
$$\begin{cases} 2x + \frac{2}{3}y + z = -8 \\ x + 2y - \frac{1}{3}z = 6 \\ -\frac{1}{2}x + 3y - 2z = 22 \end{cases}$$

For #7-8: Luke had some quarters and dimes in his pocket. The quarters and dimes are worth \$2.55. He has 3 times as many quarters as dimes.

7. Write a matrix equation to find the number of quarters, x, and dimes, y, Luke has.

8. How many quarters and dimes does Luke have?

9. The coordinates (x, y) of a point in a plane are the solution of the matrix equation $\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5 \\ 2 \end{bmatrix}$. In what quadrant is the point located?