2.1 Notes: Slope

Slope: What does it mean? Watch this video, from the start to 4:40: https://www.youtube.com/watch?v=zihsQC0IUd8&ab_channel=MashupMath

Slope can be thought of as:

Examples: Find the slope of each line from the graphs shown. Write your answer in simplified form.

Types of slope (positive, negative, zero, undefined):

Alg 1 Credit Recovery Sem 1		Ch 2 Notes: Graphing Lines	
The Slope Formula:			
Examples: Use the Slope for	mula to find the slope of the line conn	ecting the two listed points.	
7) (5, 3) and (7, 6)	8) (10, -2) and (16, 20)	9) (3, 13) and (7, 1)	
You try!			
10) (6, 1) and (12, 4)	11) (-4, 1) and (5, -2)	12) (7, 1) and (12, 1)	
		y	
Example 13: Use the graph t and has a slope of $-\frac{3}{4}$.	o draw a line that goes through the point	(4, 2)	
You try! Example 13: Use the graph t point (-1, -3) and has a slope of	o draw a line that goes through the of 5. Hint: think of the slope as a fractio	n.	

• x

2.1 Notes: Graphing Lines in y = mx + b form

What is a line?

Slope-intercept form of a line:

Graphing lines in slope-intercept form:

- 1) *begin* with the *b*-value (the _____ __-- _____)
- 2) use the slope *m* to *move* to the next point. Reminder: slope =

Examples: Graph each line in slope intercept form below. You need at least two points on your graph.

Activity: Use the coordinate system below, along with a spaghetti noodle, to quickly graph the equations given by your teacher. V

Writing Equations of Lines in Slope-Intercept Form:

Examples: Given each graph, write the equation of the line shown in slope-intercept form.

The equation for each problem DOES NOT MATCH the graph below it. Find the correct match and write the letter of that graph in the blank.

Alg 1 Credit Recovery Sem 1

Ch 2 Notes: Graphing Lines

2.3 Notes: Graphing Lines in (h, k) form

Exploration:

• A line goes through the point (-3, 2). Draw as many lines as possible that meet this requirement.

• A line has slope of $m = \frac{4}{5}$. Draw as many lines as possible that meet this requirement.

(*h*, *k*) form of a line:

Graphing lines in (h, k) form:

Alg 1 Credit Recovery Sem 1

More practice: Graph each line.

4)
$$y = -\frac{7}{2}(x+1) - 3$$

5) $y = 3(x-5) + 2$
6) $y = -\frac{1}{4}(x-4)$

7) Use the equation from #5. Convert this into slope-intercept form, and then graph. Compare with your result from #5.

8) Use the equation from #6. Convert this into slope-intercept form, and then graph. Compare with your result from #6.

2.4 Notes: Graphing Lines in Standard Form

Standard Form of a Line

Converting Equations to Slope-Intercept Form

Examples: Each line is in standard form. Convert each line to slope-intercept form.

2) -4x + 2y = 61) 3x + y = -2

3)
$$7x - 5y = -10$$
 4) $-x + 4y = 12$

5) -8x + 10y = 116) 6x - y = 14

9

Examples: Each line is in standard form. Convert each line to slope-intercept form. Then graph each line.

7)
$$-2x + 5y = 10$$
 8) $4x - 3y =$

10) -x - y = 3

2.5 Notes: Graphing Special Lines

Exploration! Work with your group or partner.

A. Consider the horizontal line shown below. Name 5 points on this line. What do these points have in common?

B. Consider the vertical line shown below. Name 5 points on this line. What do these points have in common?

Equations of Special Lines

Horizontal Lines

Vertical Lines

Examples: Graph each special line below.

7) y = 0

8) x = 0

Examples: For each special line graphed below, write its equation.

As a reminder, not all lines are vertical lines. Graph the lines below, which is a mix of special lines and slanted lines.

