6.1 Notes: Multiplying with Exponents

Kev Terms

Base	Exponent	Coefficient	Sample	

Exploration A:

* Expand: x^3

*Expand: x^4

* Expand and simplify: $x^3 \cdot x^4$

*What do you notice?

Exploration B:

* Expand: $2a^5$

*Expand: $7a^3$

* Expand and simplify: $2a^5 \cdot 7a^3$

*What do you notice?

Exploration C:

* Expand: $-4h^2g$

*Expand: $3hg^4$

* Expand and simplify: $-4h^2g \cdot 3hg^4$

*What do you notice?

Multiplying Expressions with the Same Base:

Examples #1 - 6: Simplify each expression.

1)
$$b^7 \cdot b^5 \cdot b$$

2)
$$3w^4 \cdot -7w^{21}$$

2)
$$3w^4 \cdot -7w^{21}$$
 3) $(-10a^3b^{14})(-7ab^2)$

You try #4 – 6!

4)
$$5p \cdot p^8 \cdot 2p^3$$

4)
$$5p \cdot p^8 \cdot 2p^3$$
 5) $(-x^5y)(3xy^4)$ 6) $d^5 \cdot d^{13} \cdot d$

6)
$$d^5 \cdot d^{13} \cdot d$$

Exploration D: Expand each expression, and then evaluate. Verify on a calculator.

$$*(-2)^4$$

$$*-2^{4}$$

$$*(-2)^3$$

$$*-2^{3}$$

Draw a conclusion from your observations.

Examples #7 - 12: Simplify each expression. Evaluate numerical bases.

7)
$$(-3)^3 \cdot (-3)$$
 8) $-5^3 \cdot 5$

$$(8) -5^3 \cdot 5$$

9)
$$(-2)^2(x^3yw^4)(-2xy^5w^3)$$

You try!

10)
$$(-5)^2 \cdot (-5)$$
 11) $4^2 \cdot -4^2$

11)
$$4^2 \cdot -4^2$$

12)
$$(-6)^3(a^5b^4)(-6ab)$$

6.2 Notes: Dividing with Exponents

Objectives:

Students will be able to simplify division with expressions with the same base taken to a power.

Exploration A:

* Expand: x^6

*Expand: x^4

* Expand and simplify: $\frac{x^6}{x^4}$

*What do you notice?

Exploration B:

* Expand: $12a^5$

*Expand: $4a^8$

* Expand and simplify: $\frac{12a^5}{4a^8}$

*What do you notice?

Exploration C:

* Expand: $-4h^2gk$

*Expand: $-6hg^4k$

* Expand and simplify: $\frac{-4h^2gk}{-6hg^4k}$

*What do you notice?

Dividing Expressions with the Same Base:

Examples #1 - 6: Simplify each expression.

1)
$$\frac{b^7}{b^5}$$

2)
$$\frac{18w^4}{-9w^{21}}$$

3)
$$-\frac{2x^{10}}{4x^{10}}$$

You try #4 – 6!

4)
$$\frac{50p^8}{2p^3}$$

5)
$$\frac{3a^{14}}{9a^{14}}$$

$$6) \ \frac{-4w^{10}}{-2w^{12}}$$

Examples #7 - 10: Simplify each expression.

7)
$$\frac{x^4 \cdot x^3}{x}$$

8)
$$\frac{-10a^3b^{14}}{-15a^3b^2}$$

You try #9 - 10!

9)
$$-\frac{2x^5y}{10xy^4}$$

10)
$$\frac{d^5 \cdot d^{13}}{d^6}$$

11) Find and correct the error(s) in the solution shown. Simplify: $-\frac{3x^5y^3z^4}{12x^7yz^3}$ Solution: Power for bases

Toefficients: $\frac{X_5}{7-5=2}$ $\frac{25}{3-1=2}$ $\frac{25}{4-3=1}$

$$\frac{\chi_s}{7-S=2}$$

6.3 Notes: More Rules with Exponents Objective:

- Students will simplify exponential expressions with more than one base raised to the same power.
- Students will simplify exponential expressions with more than one power.

Exploration A: Expand out the following expressions and then simplify.

•
$$(3xy)^2$$

•
$$\left(\frac{5a}{bc}\right)^3$$

What do you notice?

Power to a Product Rule

Power to Quotient Rule

Examples #1 – 6: Simplify each expression. Evaluate numerical bases.

1)
$$(4bd)^3$$

$$2) \left(\frac{3x}{y}\right)^4$$

3)
$$\left(\frac{-5g}{2h}\right)^2$$

You try #4 - 6!

4)
$$(-4fh)^3$$

5)
$$\left(\frac{8w}{z}\right)^2$$

$$6) \left(\frac{9x}{5y}\right)^2$$

Exploration B: Expand out the following expressions and then simplify.

•
$$(5x^4)^2$$

•
$$(a^5b^2)^3$$

What do you notice?

Power to a Power Rule

Examples #7 – 12: Simplify each expression. Evaluate numerical bases.

7)
$$(4\bar{b}^5)^3$$

8)
$$(-3x^5)^4$$

9)
$$-(5a^{10})^2$$

You try #10 - 12!

10)
$$(-10y^3)^3$$

11)
$$-(8g^6)^2$$

12)
$$(-7h^{11})^2$$

What if there is more than one rule in a single problem?

Examples 13 – 16: Simplify each expression. Evaluate numerical bases.

13)
$$(2x^8y)^3 \cdot 7x^2$$

14)
$$\frac{(x^7y^3)^5}{(xy^4)^6}$$

You try #15 - 16!

15)
$$(-4ab^2)^2 \cdot 8a^5b$$

$$16) \left(\frac{-3y^7}{xy^5}\right)^2$$

6.4 Notes: Zero and Negative Powers

Objectives: Students will be able to simplify expressions with zero and negative powers

Exploration A: Consider the expanded terms. Simplify using exponential notation.

- a) $-3 \cdot x \cdot x \cdot x \cdot x \cdot x$
- b) $-3 \cdot x \cdot x \cdot x$
- c) $-3 \cdot x$
- d) -3

For part d), how many times does x appear in this expression?

Taking a Base to the Power of Zero

Note: 0^0 is undefined. Why do you think this is so?

Examples 1 - 6: Simplify each expression.

1.
$$a^{0}$$

2.
$$-2x^0$$

3.
$$-6 \cdot (392,568,132.873)^0$$

You try #4 – 6!

You try #4 – 6!
4.
$$(-24x^3 + 10x^4y^{10})^0$$
 5. $-16b^0$

5.
$$-16b^0$$

6.
$$2(7x^3)^0$$

Exploration B: Consider the expanded terms. Simplify using exponential notation. Look for a pattern in your answers!

a)
$$\frac{x \cdot x \cdot x}{x}$$

b)
$$\frac{x \cdot x \cdot x}{x \cdot x}$$

c)
$$\frac{x \cdot x \cdot x}{x \cdot x \cdot x}$$

d)
$$\frac{x \cdot x \cdot x}{x \cdot x \cdot x \cdot x}$$

e)
$$\frac{x \cdot x \cdot x}{x \cdot x \cdot x \cdot x \cdot x}$$

f)
$$\frac{x \cdot x \cdot x}{x \cdot x \cdot x \cdot x \cdot x \cdot x}$$

Negative Exponents

Examples 7 - 12: Simplify each expression. Do not write negative or 0 exponents in your final answer.

8)
$$\left(\frac{1}{b}\right)^{-2}$$

9)
$$\frac{1}{7^{-2}}$$

You try #10 – 12!

11)
$$\frac{1}{2^{-6}}$$

12)
$$b^{-3}$$

Examples 13 – 18: Simplify each expression. Do not write negative or 0 exponents in your final answer.

13)
$$\frac{a^3}{a^{-4}}$$

$$14) \quad \frac{x^3 y^{10}}{x^7 y^{-3}}$$

$$15) \ \frac{5^{-1}b^3d^{-2}}{b^3d^4}$$

You try #16 - 18!

16)
$$\frac{y^{-4}}{y^6}$$

17)
$$\frac{x^{-4}y^{-2}}{x^7y^{-5}}$$

18)
$$\frac{x^{-3}y^3}{xy^{-4}}$$

Challenge Problems: Simplify each expression.

$$19) \ \frac{5a^{-2}}{a^5b} \cdot \frac{b^3}{25b^{-8}}$$

$$20) \left(\frac{3x^2y}{x^{-2}y^4} \right)^{-2}$$

6.5 Notes: Solving Exponential Equations

Objectives: Students will be able to solve equations with exponents.

Exploration #1: Which of the following expressions below are equivalent to 9^2 ? Choose all that apply.

- A) 3^4

- B) 81^1 C) $\left(\frac{1}{9}\right)^{-2}$ D) $\left(\frac{1}{3}\right)^{-4}$ E) $\left(\frac{1}{81}\right)^{-1}$

Exploration #2: Rewrite the expression **64**⁵ in as many ways as you can thinking of by changing the base and the power. Hint: Use bases that go into 64 like 2, 4, ?

Solving Exponential Equations using the same base.

Examples #1 – 3: Solve the following exponential equations.

1)
$$6^x = 36$$

2)
$$2^{x+5} = 8$$

3)
$$2^x = 2^{3x-7}$$

You try #4 – 6!

4)
$$5^x = 25$$

5)
$$11^{2x-4} = 121$$

6)
$$6^{2x-9} = 216$$

Solving Multi-Step Exponential Equations:

Examples 7 - 12: Solve the following exponential equations.

$$7) \ 3^{x-7} + 1 = 4$$

8)
$$5(3)^x = 405$$

9)
$$\left(\frac{1}{4}\right)^{5x} = 4^{x+8}$$

You try #10 - 12!

10)
$$4\left(\frac{1}{3}\right)^x = 108$$

$$11) \ 4^{5x+1} + 3 = 19$$

12)
$$\left(\frac{2}{3}\right)^4 = \left(\frac{3}{2}\right)^{4x+11}$$