10.1 Notes: Solving Quadratics by Square Rooting

Objectives:

- Solve quadratic equations by square rooting.
- Determine when a quadratic equation has no solution.

Quadratic Expression	
Quadratic Equation	
Quadratic Function	Note: we will learn how to graph quadratic functions in Chapter 11.
	Solutions of a quadratic function are theintercepts. We can have solution, solution, or solutions.
Solutions of a Quadratic Function	we can havesolution,solutions.

Examples 1-3: Find the solution(s), if any, of the quadratic functions that are graphed below.

1)

2)

3)

Alternate Terms for "x -intercepts"	
Solving a Quadratic Equation by	Note: When a variable ² or () ² is isolated, it cannot equal a negative number.
Square Rooting	If it does, then there is NO solution.

Examples #1 - 6: Solve each equation for the variable by square rooting.

1)
$$z^2 - 5 = 4$$

2)
$$r^2 + 7 = 4$$

3)
$$4x^2 + 3 = 3$$

You Try #4 – 6!

4)
$$-3x^2 + 4 = -23$$
 5) $4t^2 + 17 = 17$

5)
$$4t^2 + 17 = 17$$

6)
$$p^2 + 8 = 0$$

Examples 7 – 8: Solve. Simplify radical answers. **You Try #8!**

7)
$$5b^2 - 3 = 97$$

8)
$$-3a^2 + 4 = -32$$

Examples 9 - 14: Solve for the variable. Simplify any radical answers.

9)
$$(x-2)^2 = 25$$

10)
$$(x+1)^2 - 3 = 3$$

10)
$$(x+1)^2 - 3 = 3$$
 11) $5(x+1)^2 - 3 = 77$

You Try #12 – 14!

12)
$$(x + 4)^2 = 36$$

13)
$$(x-5)^2 + 1 = 11$$
 14) $4(a-3)^2 - 8 = 0$

14)
$$4(a-3)^2 - 8 = 0$$

Examples 15 - 18: Solve for the variable. Simplify any radical answers.

15)
$$-3(x-2)^2 + 5 = -31$$

16)
$$5(x+4)^2 + 20 = 10$$

You Try #17 – 18!

17)
$$-4(x+2)^2 + 8 = 28$$

18)
$$2(x-1)^2 - 3 = 13$$

10.2 Notes: Solving Quadratics by Factoring, Day 1

Objectives:

- Use the Zero-Product Property to solve equations.
- Solve quadratic equations by factoring.

Warm-Up: With your group or a partner to factor the expressions below. If needed, use your Ch 8 Notes.

A)
$$x^2 + 5x + 4$$

B)
$$a^2 - 9$$

C)
$$6y^2 - 9y$$

Exploration: Work with a partner or your group.

- Given that ab = 0. What must be true about a and/or b?
- Given that (x-2)(x+5) = 0. What values of x make this equation true? Why?

Zero-Product Property Let a and b be real numbers. If ab = 0, then

For #1 - 4: Solve each equation for x.

1)
$$x(x-6) = 0$$

2)
$$-2.5x(x+1) = 0$$

You Try #4!

3) 3(x-2)(5x+2) = 0

4)
$$4x(2x-3)(x-100) = 0$$

Solving Quadratic **Equations by Factoring**

Reminder: What are other names for the "solutions" of a quadratic equation?

Examples 5 - 10: Solve each equation for the variable by factoring.

5)
$$x^2 + 3x - 10 = 0$$
 6) $0 = h^2 - 25$

6)
$$0 = h^2 - 25$$

7)
$$a^2 - 10a + 25 = 0$$

You try #8 - 10!

8)
$$x^2 - 49 = 0$$

9)
$$b^2 + 2b + 1 = 0$$

9)
$$b^2 + 2b + 1 = 0$$
 10) $0 = x^2 + 4x - 12$

Examples 11 – 13: Solve each equation for the variable by factoring. You Try #13!

11)
$$4x^2 + 8x = 0$$

12)
$$-9x^2 + 6x = 0$$

12)
$$-9x^2 + 6x = 0$$
 13) $15x^2 + 3x = 0$

Examples 14 – 19: Solve each equation for the variable by factoring. Reminder: look for the GCF first. Not all problems will have a GCF, but some will.

14)
$$2x^3 - 14x^2 - 36x = 0$$
 15) $-10x^2 + 90 = 0$

$$15) -10x^2 + 90 = 0$$

$$16) \ 6x^2 - 13x - 5 = 0$$

17)
$$5x^2 - 20 = 0$$

18)
$$-3x^3 - 18x^2 - 24x = 0$$
 19) $10x^2 - 3x - 1 = 0$

$$19)\ 10x^2 - 3x - 1 = 0$$

20) Consider the equation $3x^2 - 12 = 0$. Solve this problem in two ways:

By factoring

By square rooting (see the 10.1 Notes)

Did you get the same answer with each method?

21) Consider the equation $x^2 + 2x - 3 = 0$, which can be solved by factoring. Explain why this equation could *not* be solved by square rooting.

10.3 Notes: Solving Quadratics by Factoring, Day 2

Objectives:

- Use the Zero-Product Property to solve equations.
- Solve quadratic equations by factoring.
- Re-write equations so that they can be solved by factoring.

Writing Equations in Equivalent Forms	To solve an equation by factoring, the equation must be set equal to If the equation is not set equal to, then it can be written in an equivalent form.
Standard Form of a Quadratic Equation	

Examples #1 - 6: Solve each equation by factoring.

1)
$$x^2 = -10x$$

$$2) x^2 + 40 = 14x$$

3)
$$x^2 = -9x - 18$$

You Try #4 – 6!

4)
$$x^2 - 3x = 40$$

5)
$$x^2 = 8x + 9$$

6)
$$9x^2 = -6x$$

Examples #7 - 12: Solve each equation by factoring.

7)
$$3a = -a^2 + 10$$

8)
$$3b^2 + 18 = -21b$$

$$9) -2x^2 - 15 = 11x$$

You Try #10 – 12!

10)
$$x^2 - 30 = x$$

11)
$$-2x^2 + 16x = 14$$
 12) $3 = -2x^2 + 5x$

12)
$$3 = -2x^2 + 5x$$

Examples #13 – 16: Solve each equation by factoring.

13)
$$3a^2 - 18a - 45 = 3$$

14)
$$49 = 4b^2$$

You try #15 – 16!

15)
$$81 = 25y^2$$

16)
$$-4x^2 + 14 = 8x + 2$$

- 17) Consider the equation $x^2 3x + 1 = 0$.
 - Can this equation be solved by square rooting? Why or why not?
 - Can this equation be solved by factoring? Why or why not?
 - Use a graphing calculator or technology to graph $y = x^2 3x + 1$. Sketch the graph to the right.

- How many *x*-intercepts does this quadratic function have? _____ So how many solutions should the equation have? _____
- Note: we will learn another method next class that could be used to solve this equation.

10.4 Notes: The Quadratic FormulaObjectives

- Use the Quadratic Formula to solve quadratic equations.
- Determine when a quadratic equation has no solution.

The Quadratic Formula	
When can the Quadratic Formula be used?	

For Examples #1-4, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals.

1)
$$x^2 - 5x + 2 = 0$$

2)
$$x^2 + 9 = 9x$$

You try #3 – 4!

3)
$$x^2 + 5x = 3$$

4)
$$x^2 + 5x - 5 = 0$$

For Examples 5 - 8, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals.

5)
$$5x^2 + 3x - 9 = 0$$

6)
$$5x^2 + 3x + 2 = 0$$

You try #7 – 8!

7)
$$x^2 + 3 = 4x$$

8)
$$4x^2 - x + 20 = 0$$

For Examples 9 - 10, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals.

You try!

9)
$$3x^2 - 2 = -10x$$

10)
$$2x^2 - 6x - 5 = 0$$

Example 11: Consider the function $y = x^2 - 5x + 2$

- a) From #1 in this lesson, you had solved $x^2 5x + 2 = 0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:
- **b)** Use a calculator to convert these solutions for *x* to decimals rounded to the nearest tenth.

c) The graph of the function $y = x^2 - 5x + 2$ is shown to the right. What did you find when you solved this equation for x?

Example 12: Consider the function $y = 5x^2 + 3x + 2$

- a) From #6 in this lesson, you had solved $5x^2 + 3x + 2 = 0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:
- **b)** The graph of the function $y = 2x^2 2x + 4$ is shown to the right. What did you find when you solved this equation for x?

Ch 10 Study Guide: Solving Quadratics

Technique	Hints and Steps	Read about it in your notes!
Solving by Square Rooting $ax^2 + c = \text{constant}$ $a(x - h)^2 + k = \text{constant}$	 Cancel c or k by adding or subtracting from both sides Divide both sides by a. Square root both sides (±) If the variable is not isolated, then add or subtract h from both sides. Reminder: x² ≠ negative if it does, then there is no solution. 	Section 10.2
Solving by Factoring $ax^2 + bx + c = 0$ $ax^2 + c = 0$	 Get a 0 on one side of the equation. Factor completely. Set each factor = 0 and solve by using the Zero Product Property. 	Sections 10.2 and 10.3
Solving by the Quadratic Formula $ax^2 + bx + c = 0$	 Get a 0 on one side of the equation. Use x = (-b±√(b²-4ac))/2a Reminder: √negative means there is no solution. 	Section 10.4