Ch 10 Notes KEY

Thursday, October 5, 2023

8:08 AM

10.1 Notes: Solving Quadratics by Square Rooting

Objectives:

- Solve quadratic equations by square rooting.
- Determine when a quadratic equation has no solution.

Quadratic Expression	highest power of x is $2 \leftarrow degree is$ $3x^2 - 8x + 5$
Quadratic Equation	a quadratic expression and an = sig= $8x^2 = 16 \qquad (2x-1)^2 = 4$
Quadratic Function	$y = ax^{2} + bx + C$ (degree 2) $y = a(x - h)^{2} + K$ * in put (x) y = a(x - p)(x - q) and an output (y) Note: we will learn how to graph quadratic functions in Chapter 11.
Solutions of a Quadratic Function	Solutions of a quadratic function are the

Examples 1-3: Find the solution(s), if any, of the quadratic functions that are graphed below.

CR Algebra 1

Ch 10 Notes

Solving Quadratics

Alternate Terms for "x -intercepts"

Solving a Quadratic Equation by **Square Rooting**

Zeros, voots, or solutions

Disolate (mm) term

(concel outside #5 by 45ing
inverse operations)

DISTOP: (m) = POSITIVE(0)

Square not both sides (±)

Tisolate the variable

Note:

When a variable² or ()2 is isolated, it cannot equal a negative number.

> there is NO solution.

Examples #1 - 6: Solve each equation for the variable by square rooting.

1)
$$z^2 - 5 = 4 \leftarrow$$

2)
$$r^2 + 7 = 4$$

3)
$$4x^2 + \beta = 3$$

You Try #4 - 6!

4)
$$-3x^2 + 4 = -23$$

5)
$$4t^2 + 17 = 17$$

Examples 7 – 8: Solve. Simplify radical answers. You Try #8

7)
$$5b^2 - 3 = 97$$

8)
$$-3a^2 + \frac{4}{4} = -32$$

$$-\frac{3a^2}{-3} = -\frac{36}{-3}$$

CR Algebra 1

Ch 10 Notes

Solving Quadratics

Examples 9 – 14: Solve for the variable. Simplify any radical answers.

11)

$5(x+1)^2 - 3 = 77$	
5(x+1)2= 80	
$\sqrt{(x+1)^2} = \sqrt{16}$ $x+1=\frac{1}{2}$	χ=3
x+1=+4	X= -5
x= -1 ± 4	

You Try #12 - 14! $12\sqrt{(x+4)^2} = 36$ $2 + 4 = \frac{1}{2} = 6$ 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 3 = 2 = 2 4 = 2 = 2 3 = 2 = 2 4 = 2 4 =

13)
$$(x-5)^{2} + 1 = 11$$
 $(x-5)^{2} = 10$
 $x-5 = t \sqrt{10}$
 $x = 5 \pm 10$

14)
$$4(a-3)^2 - 8 = 0$$
 $4(a-3)^2 = 8$
 $4(a-3)^2 = 9$
 $4(a-3)^2 = 9$
 $4(a-3)^2 = 9$
 $4(a-3)^2 = 10$
 4

Examples 15-18: Solve for the variable. Simplify any radical answers.

15)
$$-3(x-2)^2 + 5 = -31$$

$$-\frac{3(x-2)^{2}}{\sqrt{(x-2)^{2}}} = -\frac{36}{3}$$

$$\chi - 7 = \frac{1}{2} 2 \sqrt{3}$$

$$\chi = 2 \pm 2 \sqrt{3}$$

$$\chi = 2 \pm 2 \sqrt{3}$$

17)
$$-4(x+2)^2 + 8 = 28$$

$$-4(x+2)^2 = 20$$

16)
$$5(x+4)^2 + 20 = 10$$

18)
$$2(x-1)^2 - 3 = 13$$

$$\frac{2(x-1)^{2}}{(x-1)^{2}} = \frac{16}{2}$$

$$x = \frac{1}{2}$$

Ch 10 Notes

Solving Quadratics

10.2 Notes: Solving Quadratics by Factoring, Day 1

Objectives:

- Use the Zero-Product Property to solve equations.
- · Solve quadratic equations by factoring.

Warm-Up: With your group or a partner to factor the expressions below. If needed, use your Ch 9 Notes.

$$\frac{B) a^2 - 9}{(\alpha + 3)(\alpha - 3)}$$

Exploration: Work with a partner or your group.

• Given that ab = 0. What must be true about a and/or b?

• Given that (x-2)(x+5) = 0. What values of x make this equation true? Why?

Zero-Product Property Let a and b be real numbers. If ab = 0, then

$$a=0$$
 and/or $b=0$

For #1 - 4: Solve each equation for x.

Solving Quadratic Equations by **Factoring**

(1) Get a O on one side of the

2) Factor.

3) Use the Zen-Product Property to solve.

Reminder: What are other names for the "solutions" of a quadratic equation?

x-Intercepts, zeros, and roots

Examples 5-10: Solve each equation for the variable by factoring.

 $5) x^2 + 3x - 10 = 0$ (x-2(x+5)=0

6) $0 = h^2 - 25$

You try #8 - 10!

8) $x^2 - 49 = 0$

(x+7)(x-7)=0X= +7

9) $b^2 + 2b + 1 = 0$ (b+1)(b+1)=0

Examples 11 – 13: Solve each equation for the variable by factoring. You Try #13!

11) $4x^2 + 8x = 0$ GCF: 4x (12) $-9x^2 + 6x = 0$ GCF = 3x 13) $15x^2 + 3x = 0$ GCF = 3x

Examples 14 – 19: Solve each equation for the variable by factoring. Reminder: look for the GCF first.

Not all problems will have a GCF, but some will. G(F==10)

14) $2x^3 - 14x^2 - 36x = 0$ GCF: 2x $-10(x^2 - 9) = 0$ $2x(x^2 - 7x - 18) = 0$ 2x(x + 2 | x - 9) = 0 $15) = 10x^2 + 90 = 0$ $16) 6x^2 - 13x - 5 = 0$ (2x - 1)(3x - 5) = 0 2x(x + 2 | x - 9) = 0 $17) 5x^2 - 20 = 0$ $18) -3x^3 - 18x^2 - 24x = 0$ $19) 10x^2 - 3x - 1 = 0$ $5(x^2 - 4) = 0$ 5(x + 2)(x - 2) = 0 x = -2 | x = 2 $-3x(x^2 + 6x + 8) = 0$ 2x + 2x + 2x + 3x = 2 $-3x(x^2 + 6x + 8) = 0$ 2x + 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x = 2 2x + 2x = 2 3x + 2x

20) Consider the equation $3x^2 - 12 = 0$. Solve this problem in two ways:

By factoring 6CF = 3

3(x2-4)=0 3($\chi + 2 \chi \chi - 2$)=0 $\chi = -2 \chi = 2$ Did you get the same answer with each method?

By square rooting (see the 10.1 Notes)

3×2-17/=0

21) Consider the equation $x^2 + 2x - 3 = 0$, which can be solved by factoring. Explain why this equation could not be solved by square rooting.

10.3 Notes: Solving Quadratics by Factoring, Day 2

Objectives:

- Use the Zero-Product Property to solve equations.
- Solve quadratic equations by factoring.
- · Re-write equations so that they can be solved by factoring.

www.washoeschools.net/DRHSmath

Examples #7 – 12: Solve each equation by factoring.

$$7) 3a = (-h^{2} + (10))$$

$$a^2 + 3a - 10 = 0$$

$$(a-2)(a+5)=0$$

10)
$$x^2 - 30 = x$$

$$\chi^2 - \chi - 30 = 0$$

$$(x+s)(x-b)=0$$

Ch 10 Notes

8)
$$3b^2 + 18 = -21b$$

11)
$$-2x^2 + 16x = 14$$

$$0 = 2x^2 - 16x + 14$$

 $GCF = 2$

$$0=2(x^2-8x+7)$$

$14)(49) = 4b^2$

$$0 = (2b+7)(2b-7)$$

16)
$$(-4x^2) + 14 = 8x + 2$$

Solving Quadratics

$$0) \frac{-2x^{2}}{+2x^{2}} + \frac{15}{15} = \frac{11x}{12x^{2}} + \frac{1}{15}$$

$$0 = 2x^{2} + 11x + 15$$

$$0 = (x + 3)(2x + 5)$$

$$(2) \ 3 = (2x^2) + (5x)$$

$$\begin{cases} (2x-3)(x-1)=0 \\ x=\frac{3}{2} & x=1 \end{cases}$$

Examples #13 – 16: Solve each equation by factoring.

13)
$$3a^2 - 18a - 45 = 3$$

3(a+2)(a-8

$$15)(81 = 25y^2)$$

$$0 = 2x^{2} + x^{2}$$

$$0 = 2x^{2} + x^{2}$$

$$0 = (x + 3)$$

$$2x^2 - 5x + 3$$

 $(2x - 3)(x - 3)$

$$0 = 4b^{2} - 49$$

$$0 = (2b + 7)(2b - 7)$$

$$b = \frac{7}{2}$$

$$b = \frac{7}{2}$$

$$b = \frac{7}{2}$$

$$b = \frac{7}{2}$$

(,)

17) Consider the equation $x^2 - 3x + 1 = 0$.

• Can this equation be solved by square rooting? Why or why not?

No cannot isolate x with

a x² and a x tem !

• Can this equation be solved by factoring? Why or why not?

() No, Prime

• Use a graphing calculator or technology to graph $y = x^2 - 3x + 1$. Sketch the graph to the right.

- How many *x*-intercepts does this quadratic function have? ______ So how many solutions should the equation have? ______ 2
- Note: we will learn another method next class that could be used to solve this equation.

10.4 Notes: The Quadratic FormulaObjectives

- Use the Quadratic Formula to solve quadratic equations.
- Determine when a quadratic equation has no solution.

The Quadratic Formula	then $x = -b \pm \sqrt{b^2 - 4ac}$ the opposite $2a$
When can the Quadratic Formula be used?	anytime in the form ax2 + bx + c = 0

For Examples #1 - 4, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals.

1)
$$x^{2}-5x+2=0$$

 $\alpha=1$ $b=-5$ $c=2$
 $\chi = \frac{5 \pm \sqrt{25-4(1)(2)}}{2(1)}$
 $\chi = \frac{5 \pm \sqrt{17}}{2}$

You try #3 - 4!
3)
$$x^2 + 5x = 3$$

 $x^2 + 5x - 3 = 0$
 $x = -5 \pm \sqrt{25 - 4ux - 3}$
 $x = -5 \pm \sqrt{37}$

CR Algebra 1

Ch 10 Notes

Solving Quadratics

For Examples 5-8, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals.

6)
$$5x^{2} + 3x + 2 = 0$$

 $\alpha = 5$ $b = 3$ $c = 2$
 $\chi = \frac{-3 \pm \sqrt{9 - 4(5)}}{2(5)}$
 $\chi = \frac{-3 \pm \sqrt{-31}}{10}$

7)
$$x^{2} + 3 = (4x)$$

 $x^{2} - 4x + 3 = 0$
 $x = 1 \quad b = -4 \quad c = 3$
 $x = \frac{4 \pm \sqrt{16 - 4(1)(3)}}{2(1)}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$
 $x = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$

8)
$$4x^{2} - |x + 20| = 0$$

A= 4 b=-1 (=20
 $\chi = \frac{1 \pm \sqrt{1 - 4(4)(20)}}{2(4)}$
 $\chi = \frac{1 \pm \sqrt{-319}}{8} \rightarrow \emptyset$

For Examples 9-10, solve each equation for x by using the quadratic formula. If needed, write your answers as simplified radicals. 9) $3x^2 - 2 = (-10x)$ You try!

9)
$$3x^{2} - 2 = (-10x)$$

 $3x^{2} + 10x - 2 = 0$
 $\alpha = 3$ $b = 10$ $c = -2$
 $x = \frac{-10 \pm \sqrt{100 - 4(3x - 2)}}{2(3)}$
 $x = \frac{-10 \pm \sqrt{124}}{2}$
 $x = (-10 \pm \sqrt{3})$
 $x = (-10 \pm \sqrt{3})$
 $x = (-10 \pm \sqrt{3})$

10)
$$2x^{2} - 6x - 5 = 0$$

 $0 = 2$ $b = -6$ $c = -5$
 $x = \frac{b \pm \sqrt{3}b - 4(2)(-5)}{2(2)}$

$$x = \frac{b \pm \sqrt{7}b}{4}$$

$$x = (\frac{6}{4} \pm 2\sqrt{19}) \div 2 = \sqrt{3 \pm \sqrt{19}}$$

Example 11: Consider the function $y = x^2 - 5x + 2$

a) From #1 in this lesson, you had solved $x^2 - 5x + 2 = 0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:

S+117 > S+117

b) Use a calculator to convert these solutions for x to decimals rounded to the nearest tenth.

c) The graph of the function $y = x^2 - 5x + 2$ is shown to the right. What did you find when you solved this equation for x?

Example 12: Consider the function $y = 5x^2 + 3x + 2$

a) From #6 in this lesson, you had solved $5x^2 + 3x + 2 = 0$ for x by using the quadratic equation. Write down the answers you had gotten from this problem here:

b) The graph of the function $y = 2x^2 - 2x + 4$ is shown to the right. What did you find when you solved this equation for x?

x-intercepts (none!)

Ch 10 Study Guide: Solving Quadratics

Technique	Hints and Steps	Read about it in your notes!
Solving by Square Rooting $ax^2 + c = \text{constant}$ $a(x - h)^2 + k = \text{constant}$	 Cancel c or k by adding or subtracting from both sides Divide both sides by a. Square root both sides (±) If the variable is not isolated, then add or subtract h from both sides. Reminder: x² ≠ negative if it does, then there is no solution. 	Section 10.
Solving by Factoring $ax^2 + bx + c = 0$ $ax^2 + c = 0$	 Get a 0 on one side of the equation. Factor completely. Set each factor = 0 and solve by using the Zero Product Property. 	Sections 10.2 and 10.3
Solving by the Quadratic Formula $ax^2 + bx + c = 0$	 Get a 0 on one side of the equation. Use x = ^{-b±√b²-4ac}/_{2a} Reminder: √negative means there is no solution. 	Section 10.4