Day	Date	Assignment (Due the next class meeting)
	SEE TEAMS	Chapter 4 Test Notes 5.1 solving by factoring
		5.1 Worksheet Solve quadratic functions by factoring
	SEE TEAMS	5.2 Worksheet Solve many functions by factoring
	SEE TEAMS	5.3 Worksheet Solve functions with more complex factoring
	SEE TEAMS	5.4 Worksheet Solve quadratic functions by using the quadratic formula
	SEE TEAMS	5.5 Worksheet Solve systems involving quadratic functions
	SEE TEAMS	Ch 5 Practice Test
	SEE TEAMS	Ch 5 Test Notes: 6.1 adding. Subtracting, multiplying polynomials 6.1 Worksheet Adding/Subtracting and Multiplying
		ber 29 th No School – Nevada Day nber 11 th No School – Veteran's Day

- Be prepared for daily quizzes.
- Every student is expected to do every assignment for the entire unit.
- Try www.khanacademy.org if you need help outside of school hours.
- ★ Students who complete 100% of their homework for the semester will receive a 2% bonus!

5.1: Solving functions by factoring

Work with your partner or group to determine which are solutions to f(x) = 0 and g(x) = 0.

$$f(x) = x^2 - x - 6$$

$(x) = x^2 - x - 6$	g(x) = (x-3)(x+2)
6.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x	Solution to $f(x) = 0$?	
-3	(-3)2-(-3)-6-9+3-6	= 6 # QU
-2	(-2)2-(-2)-6=4+2-6=	o yes
-1	(-1)2-(-1)-6=-4	WO
0	02-103-6=-6	No
1	12-1-6=-6	No
2	22-2-6=-4	10
3	32-3-6=0	yes
	- What is would hotice	V

x Solution to
$$g(x) = 0$$
?
-3 (-3-3)(-3+2) = (-\(\pi\)(-1) = \(\pi\) NO
-2 (-2-3)(-2+2)=\(\pi\)(0) = O yel
-1 (-1-3)(-1+2) = (-\(\pi\)(1) = -1 NO
0 (0-3)(0+2) = -\(\pi\) NO
1 (1-3)(1+2) = (-2)(3) = -\(\pi\) NO
2 (2-3)(2+2) = (-1)(4) = -4 NO
3 (3-3)(3+2) = 0(5) = O yel

Note: The solutions to f(x) = 0 and g(x) = 0 are also called the "zeroes" or the "roots" of the functions. x-intercepts

low do you find the y-intercept?

How do you find the x-intercept?

Example 1: Find the solutions to the equation: $f(x) = x^2 + 3x$

x	Solution to $f(x) = 0$?
-3	(-3)2+3(-3)=9-9=0
-2	(-2)2+3(-2)=4-6=-2
-1	(-1)2+3(-1)=1-3=-2
0	(0)2+3(0)=0
1	(1)2+3(1)=1+3=4
2	(2) 2 +3(2)=4+6=10
3	32+313)=9+9=18

What are the other ways to describe solutions?

Examples -- Find the solutions for the following functions:

2.)
$$y = 3x^{2} - 9x$$

 $0 = 3x^{2} - 9x$
 $0 = 3x(x-3)$
 $3x = 0$ $x - 3 = 0$
 $x = 3 + 3$ $x = 0$

3.)
$$y = 10x^{2} - 2x$$

$$0 = 2x(5x-1)$$

$$2x = 0 5x-1 = 0$$

$$x = 0 5x = 1$$

$$x = 75$$

$$x = 9, \frac{1}{5}$$

4.)
$$y = 12x + 4$$

 $0 = 4(3x + 1)$
 $3x + 1 = 0$
 $3x = -1$
 $x = -\frac{7}{3}$

What would the graph of these functions look like?

Intercept Form: f(x) = a(x - root)(x - root)

Examples -- Find the solutions (roots, zeroes) for the following functions:

5.)
$$y = 3x^2 - 2x$$

 $0 = x(3x - 2)$
 $x = 0$
 $3x - 2 = 0$
 $3x = 2$
 $x = 2/3$

6.)
$$y = 12x^{2} + 9x$$

 $0 = 3x(4x + 3)$
 $3x = 0$ $4x + 3 = 0$
 $x = 0$ $4x = -3$
 $x = -3/4$

What are the solutions to the following functions?

7.)
$$y = 2(x+3)^2 + 8$$

$$0 = 2(x+3)^2 + 8$$

$$-8 = 2(x+3)^2$$

$$-8 = 2(x+3)^2$$

$$2|Page+4 = \sqrt{(x+3)^2}$$

$$\pm 2i = x+3$$

$$x = -3 \pm 2i$$

Example 8.)

What are the solutions to f(x) = 0?

What is a possible equation for f(x)in factored form?

Examples -- Find the solutions for the following functions and sketch graphs by using the x-intercepts (and estimating the vertex).

9)
$$y = x^2 - 4x + 4$$

10.)
$$y = x^2 + 2x - 15$$

0 = $(x+5)(x-3)$

Examples—Solve:

11.)
$$x^2 - 4x = 12$$

$$\chi^2 - 4x - 12 = 0$$

12.)
$$-x^2 = x - 42$$

5.2: More solving functions by factoring

Work with your partner or group to determine the solutions to f(x) = 0 and g(x) = 0.

$$f(x) = 7x - 14$$

g(x) = 0	(x -	1)(x +	1)(x -	2)
----------	------	--------	--------	----

x	Solution to $f(x) = 0$?	
-2	7(-2)-14=-14-14=-28	
-1	7(-1)-14=-7-14=-21	
0	1(0) -14 = -14	
1	7-14 = -7	
2	7(2)-14=0	

х	Solution to $g(x) = 0$?	carrier or shells
-2	(-2-1)(-2+1)(-2-2)=(-3)	(4)(4) 2-12
-1	6-221026-3220	
0	(-1)(1)(-2)=2	witness e
1	10)(2)(-1)=0	21(55)S
2	(1)(3)(0) =D	- 12 = x (1

What would the graph of these functions look like?

$$f(x) = a(x - root) (x - root) \dots (x - root)$$

Examples -- Find the zeroes for the following functions:

1.)
$$y = (x+3)(x-2)(x+5)$$

 $x+3=0$ $x-2=0$ $x+6=0$

$$x=-3$$
 $x=2$ $x=-S$

2.)
$$f(x) = 3x(x + \frac{1}{2})(5x - 2)$$

 $3x = 0$ $x + \frac{1}{2} = 0$ $5x = 2$

$$5x-2=0$$

$$5x-2$$

$$x=\frac{2}{8}$$

Examples -- Find the solutions for the following functions:

3.)
$$y = 3x^2(x-2)(x+5)$$

$$x=0 \qquad x=2 \qquad x=-S$$

4.)
$$f(x) = (x+5)^3$$

Degree of a function vs. # of solutions:

Examples -- Find the x-intercepts for the following functions:

5.)
$$y = 3x^2 + 6x + 3$$

 $Q = 3(x^2 + 2x + 1)$

6.)
$$f(x) = -x^2 + 2x + 35$$

Examples -- Find the zeroes for the following functions:

7.)
$$f(x) = -2x^4 + 14x^3 - 24x^2$$

8)
$$5x^4 - 15x^2 = 0$$

$$\frac{1}{x=\pm\sqrt{3}}$$

5.3: Solving functions by more complex factoring

Work with your partner or group to simplify and write the function in standard form.

Examples -- Find the solutions for f(x) = 0 in the following functions:

3)
$$f(x) = 2x^2 + 9x - 5$$

 $O = (2x-1)(x+5)$
 $2x-1=0$ $x+5=0$
 $2x=1$ $x=-5$

4)
$$f(x) = 6x^{2} + 11x + 3$$

 $0 = (9x + 3)(3x + 1)$
 $3x + 3 = 0$
 $3x + 1 = 0$
 $3x = -1$
 $x = -\frac{3}{2}$
 $x = -\frac{1}{3}$

5)
$$y = 3x^2 - 7x - 20$$

 $0 = (3x+5)(x-4)$
 $3x+5 = 0$
 $3x = -S$
 $x = -\frac{5}{3}$

6)
$$f(x) = -10x^{2} + 18x + 4$$

 $0 = -2(5x^{2}-9x-2)$
 $0 = -2(5x+1)(x-2)$
 $5x+1=0$ $x-2=0$
 $5x=-1$ $x=2$
 $x=-1/5$

Examples -- Find the solutions for the following functions:

7)
$$y = 4x^2 - 25$$

0=(2×+5)(2×-5)
-5/2 92

8)
$$36x^{2} - 50 = -1$$

 $36x^{2} = 49$
 $x^{2} = \frac{49}{36}$
 $x = \frac{1}{2} \frac{7}{6}$

9)
$$f(x) = -16x^{5} + 9x^{3}$$

 $0 = -x^{3}(10x^{2} - 9)$
 $(4x+3)(4x-3)$
 0
 $-3/4$
 $3/4$

Examples -- Find the solutions for the following functions:

10)
$$y = x^4 - 5x^2 + 4$$

 $0 = (x^2 - 4)(x^2 - 1)$
 $= (x^2)(x^2)(x^2 - 1)$
 $= (x^2)(x^2)(x^2 - 1)$

11)
$$2x^4 - 36x^2 + 162 = f(x)$$

 $2(x^4 - 18x^2 + 81)$
 $2(x^2 - 9)(x^2 - 9)$
 $2(x+3)^2(x-3)^2$
 y
 -3

12)
$$y = x^4 - 29x^2 + 100$$

 $0 = (x^2 - 36)(x^2 - 4)$
 $0 = (x^2 - 36)(x^2 - 4)$

13)
$$-x^3 - 25x = 0$$

 $-\times(\times^2 + 25) = 0$
 \downarrow
 0
 $\times = \pm 5i$

14)
$$x^{4} - 36 = 0$$

 $(x^{2} + u)(x^{2} - u) = 0$
 $x^{2} = -u$ $x^{2} = u$
 $x = \pm i \sqrt{u}$ $x = \pm \sqrt{u}$

5.4 Notes: Solving Quadratics using the Quadratic Formula

quadratic equation in general form: $ax^2 + bx + c = 0$. Let a, b, and c be real numbers such that $a \neq 0$.

The Quadratic Formula:
$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Solve using the Quadratic Formula

1)
$$x^{2} + 7x = -6$$
 $x^{2} + 7x + 0 = 0$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -1 \quad b = 2 \quad c = -6$
 $x = -2 \quad b \quad c = -2 \quad c =$

Example 5) A rocket is launched off a platform with an initial velocity of 19.6 meters per second. The path of the rocket can be modeled by the equation $h = -4.9t^2 + 19.6t + 58.8$, where h is the height of the rocket, and t is the time in seconds. After how many seconds will the rocket hit the ground?

rocket hit the ground?

$$= -4.9 (\pm 2 - 4 \pm -12)$$

$$= -4.9 (\pm -4.4 \pm -12)$$

$$= -4.9 (\pm -4.4 \pm -12)$$

$$= -4.9 (\pm -4.4 \pm -12)$$

$$= -4.9 (\pm -2)$$
(6 Seconds)

Recall what solutions to functions look like on a graph:

Example 6) What are the solutions to f(x) = 0?

Example 7) What are the solutions to g(x) = 0?

Hint: What is an equation for
$$g(x)$$
 in vertex form?

$$y = (x+5)^{2} + 4$$

$$y-4 = (x+5)^{2}$$

$$\pm 2i = x+5$$

$$-5 \pm 2i = x$$

5.5 Notes: Systems of Linear and Quadratic Equations

Essential Question: How can you solve a system of equations when one equation is linear and the other is quadratic?

Exploration: Find the solutions to the given equation.

Given $f(x) = 3x^2 - 6x + 5$ and g(x) = -3x + 23, complete the tables below to find the *x*-values where f(x) = g(x).

	f(x) =	$3x^2 - 6x + 5$
	x	f(x)
	-3	50
*	-2	29
	-1	14
	0	5
	1	2
3	2	5
*	3	14
	4	29
	5	50
	6	77
on!	7	110

g(x))=-3x+23
x	g(x)
-3	32
-2	29
-1	26
0 -	23
J=10	20
2	というなか
3	14000
4	EN Z
5	8
6	5
7	2

Graph both equations on the graphing calculator. What do you notice?

The graph's invited twice at the points (-2,20) & (3,14)

Example 1: First solve the system of equations by graphing on your graphing calculator.

Then, solve by using algebra.

Example 2: Solve by using algebra.

$$\begin{cases} f(x) = 4x^2 + 5x - 4 \\ g(x) = -3x - 4 \end{cases}$$

$$4x^{2}+8x=0$$
 $4x(x+2)=0$
 0
 0

$$4x^{2} + 8x = 0$$

$$4x(x+2) = 0$$

$$4x(x+2) = 0$$

$$3(0) - 4$$

$$-3(-2) - 4$$

$$(0 - 4)$$

$$3x + y = -5$$

$$4x^{2} + 14x + 3(-2x) + 1 = 10$$

$$3x + y = -5$$

$$4x^{2} + 14x + 3(-2x) + 1 = 10$$

$$3x + y = -5$$

$$4x^{2} + 14x + 3(-2x) + 1 = 10$$

$$3x + y = -5$$

$$\begin{cases} x^2 + 14x + 3y + 1 = \\ 3x + y = -5 \end{cases}$$

x2+14x+3(-3x-5)+1=10

$$X^{2}+14x-9x-18-9=0$$

 $X^{2}+5x-24=0$
 $(x+8)(x-3)=0$
 $x+3=0$

$$\frac{14 \times 2-8}{9=-3(-8)-5}$$

$$= 24-5$$

$$= 19$$

$$(-8, 19)$$

What are the 2 algebraic ways to solve systems of quadratic and linear functions?

Elimination substitution

How many answers will you get for these types of systems? 3 different situations:

One solution:

1 conswer

Two solutions:

No solutions:

Example 4: Use a graphing calculator to solve this system of equations by graphing.

$$\begin{cases} f(x) = 2x + 1\\ g(x) = -(x - 5)^2 - 2 \end{cases}$$

5)

Which of the following systems of equations could a student use to write a quadratic function in standard form for the parabola passing through the points (1, -3), (4, 6), and (5, 9)?

A.
$$\begin{cases} x^2 - 3x + c = y \\ 4x^2 + 6x + c = y \end{cases}$$

A.
$$\begin{cases} x^2 - 3x + c = y \\ 4x^2 + 6x + c = y \\ 5x^2 + 9x + c = y \end{cases}$$
 C.
$$\begin{cases} a - 3b + c = y \\ 16a + 6b + c = y \\ 25a + 9b + c = y \end{cases}$$

B.
$$\begin{cases} 2a+b+c=-3\\ 8a+4b+c=6\\ 10a+5b+c=9 \end{cases}$$

$$\begin{array}{c}
\textbf{D.} \begin{cases}
a+b+c=-3 \\
16a+4b+c=6 \\
25a+5b+c=9
\end{cases}$$

6)

A parabola has x-intercepts at 2 and 6 and goes through the point (8,4). What other point is on the parabola? (2,0) (6,0)

A.
$$(-2,-2)$$

B. $(4,-2)$

$$\bigcirc$$
 (-3,15)

y= = (x-2)(x-4)

$$y = \frac{1}{3}(x-2)(x-4)$$

$$-2 = \frac{1}{3}(x-2)(-2-4)$$

$$-3 = \frac{1}{3}(x-2)(-2-4)$$