Name:

Unit 10 Calendar

Day	Date	Assignment (Due the next class meeting)	
Tuesday	3/29/22 (A)	10.1 Worksheet	
Wednesday	3/30/22 (B)	Properties of Exponents & Base e	
Thursday	3/31/22 (A)	10.2 Worksheet	
Friday	4/1/22 (B)	Graphing Exponential Functions & Base e (Day 1)	
Monday	4/4/22 (A)	10.3 Worksheet	
Tuesday	4/5/22 (B)	Graphing Exponential Functions (Day 2)	
Wednesday	4/6/22 (A)	10.4 Worksheet	
Thursday	4/7/22 (B)	Changing the Base of an Exponential Function	
Friday	4/8/22 (A)	10.5 Worksheet	
Monday	4/11/22 (B)	Modeling with Exponential Functions (Growth and Decay)	
Tuesday	4/12/22 (A)	10.6 Worksheet	
Wednesday	4/13/22 (A)	Solving Exponential Equations	
Thursday	4/14/22 (A)	Unit 10 Decention Text	
Friday	4/15/22 (B)	Unit 10 Practice Test	
Tuesday	4/19/22 (A)	U: 4 10 D:	
Wednesday	4/20/22 (B)	Unit 10 Review	
Thursday	4/21/22 (A)	Un:4 10 Tor4	
Friday	4/22/22 (B)	Unit 10 Test	

- ✤ Be prepared for daily quizzes.
- * Every student is expected to do every assignment for the entire unit.
- * Try <u>www.khanacademy.org</u> if you need help outside of school hours.
- Student who complete 100% of their homework second semester on-time will receive a pizza party and 2% bonus to their grade!
- ✤ Don't forget about the webpage: <u>www.washoeschools.net/drhsmath</u>

10.1 Notes: Properties of Exponents & Base e

Let *a* and *b* be real numbers and let *m* and *n* be integers

Product of Powers	$a^m \bullet a^n =$	
Power of a Power	$(a^m)^n =$	
Power of a Product	$(ab)^m =$	
Negative Exponent	$a^{-m} =$	
Zero Exponent	$a^0 =$	
Quotient of Powers	$\frac{a^m}{a^n} =$	
Power of a Quotient	$\left(\frac{a}{b}\right)^m =$	

Examples: Simplify.

1) $(x^3y^6)^3$ 2) $(x^3)^2 \cdot (xy^2)^4$ 3) $(x^2y^{-6})^7$ 4) $(2a^2b^8)^0$

Try one of the following :a)
$$(x^2y^7)^6$$
b) $(x^{-2}y)^3 \cdot y^4$ c) 15^0

Examples: Simplify.

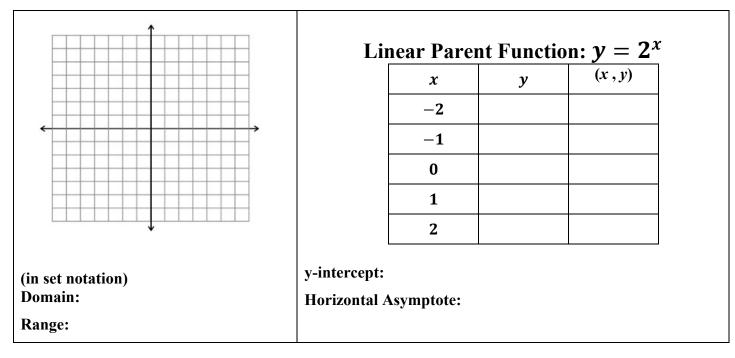
5)
$$\frac{x^5 y^2}{x^{15} y^8}$$
 6) $\left(\frac{a^4}{b^2}\right)^2$ 7) $\left(\frac{r^{-2}}{s^3}\right)^{-3}$ 8) $\frac{c \cdot c^4}{c^2}$

a)
$$\frac{x^7 y^{16}}{x^{15} y^{12}}$$

b)
$$\left(\frac{q^7}{r^{-2}}\right)^4$$

Examples: Simplify. 9) $\frac{16m^4n^{-5}}{2n^{-5}m^7}$ 10) $\frac{x^2y^{-3}}{(2x^3y^{-2})^2}$ 11) $\frac{4^2 \cdot 64^3}{4^4}$

Try one of the following!a)
$$\frac{(a^2b^4)^2}{a^{-3}b}$$
b) $\frac{24xy^6}{4x^{-2}y^4}$ c) $\frac{4^8 \cdot 2^2}{2^{20}}$

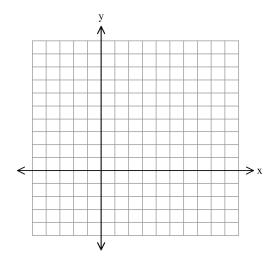


Examples: Simplify the following expressions.

12)
$$3e^2 \cdot 6e^5$$

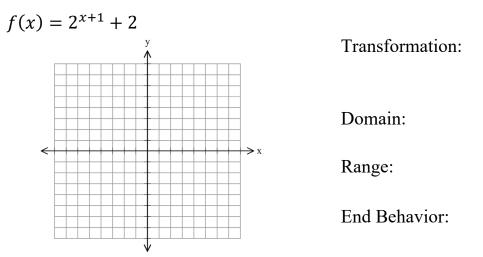
13) $\frac{18e^4}{9e^3}$
14) $(-4e^{-5x})^3$
Try one of the following!
a) $-5e^3 \cdot 2e^6$
b) $\frac{24e^4}{6e^3}$
c) $(-3e^{-4x})^2$

10.2 Notes: Graphing Exponential Functions & Base e (Day 1)


Graphing Exponential Functions:

What happens when we change b (when b > 1)?

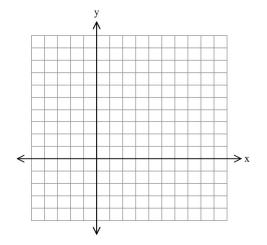
Graph each of the functions on the graphing calculator. Sketch your results on the graph provided.


- a. $y = 2^x$
- b. $y = e^x$
- b. $y = 3^x$
- c. $y = 4^x$
- d. $y = 10^x$

<u>Graphing $f(x) = ab^{x-h} + k$, when b > 1 (Exponential Growth)</u>

What happens when we change h & k?

Graph the following exponential equation. Explain how the graph is transformed from the parent function $f(x) = 2^x$. Also, state the domain and range for each function & describe the end behavior.

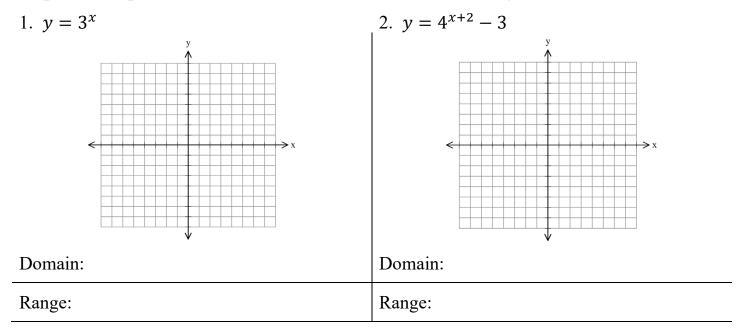

How does the graph of the exponential function change as *h* & *k* changes?

How does the graph of the exponential function change as the base *b* changes?

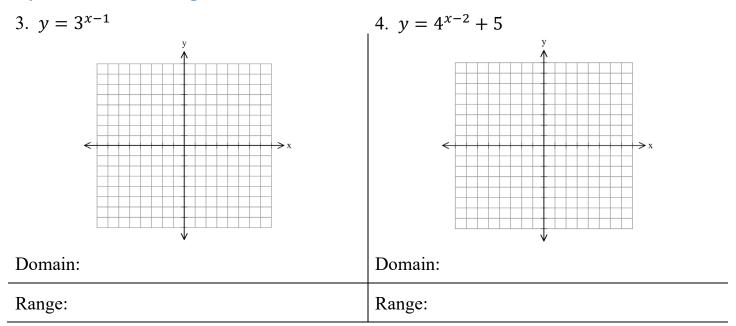
What happens when we change a?

Graph each function on the graphing calculator. Sketch your results on the graph provided.

- a. $f(x) = 4^x$
- b. $g(x) = 3(4)^x$
- c. $h(x) = \frac{1}{2}(4)^x$

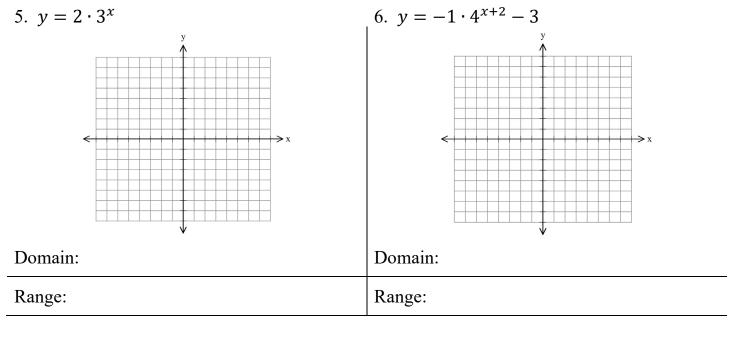

Compare the parent graph, f(x), with g(x) & h(x). What is the domain, range, & end behavior for each graph? What do you notice about the y –intercepts?

How does the graph of the exponential function change as *a* changes?

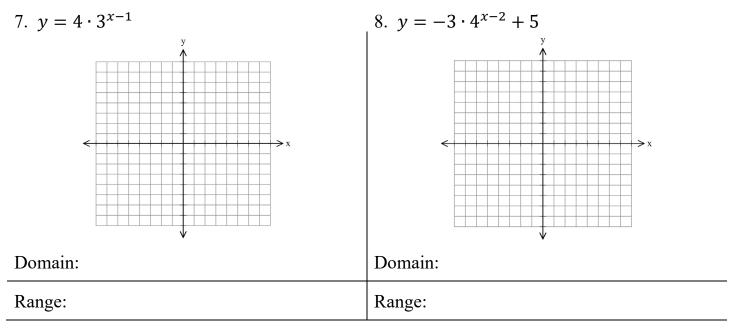

Steps to Graph Exponential Functions:

Examples

Graph each exponential function. Describe the domain & range.

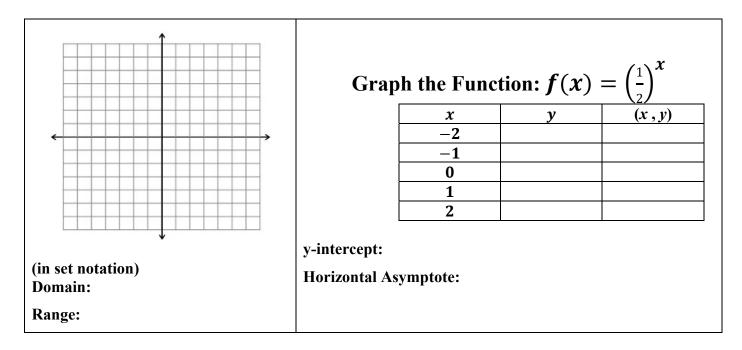


Try one of the following:



Examples

Graph each exponential function. Describe the domain & range.

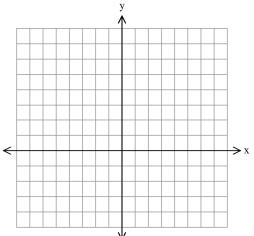

Try one of the following:

- 9. When evaluating the function $f(x) = 2^{x-4}$ for any real number x, what must be true about the value of f(x)?
 - A. The value of f(x) is always negative
- C. The value of f(x) is always greater than 4
- B. The value of f(x) is always positive
- D. The value of f(x) is always less than 4

10.3 Notes: Graphing Exponential Functions (Day 2)

Graphing $f(x) = ab^{x-h} + k$, when 0 < b < 1 (Exponential Decay)

As your go right, are the values increasing or decreasing?


Is this exponential growth or decay? Why?

What happens when we change h & k (when 0 < b < 1)?

Graph each of the following functions on the graphing calculator. Sketch your results on the graph provided. Describe the transformation from the parent function, f(x), when you change h & k.

a. $f(x) = \left(\frac{1}{2}\right)^x$ b. $g(x) = \left(\frac{1}{2}\right)^{x-2}$

c.
$$h(x) = \left(\frac{1}{2}\right)^{x+1} - 3$$

Vertical & Horizontal Reflections

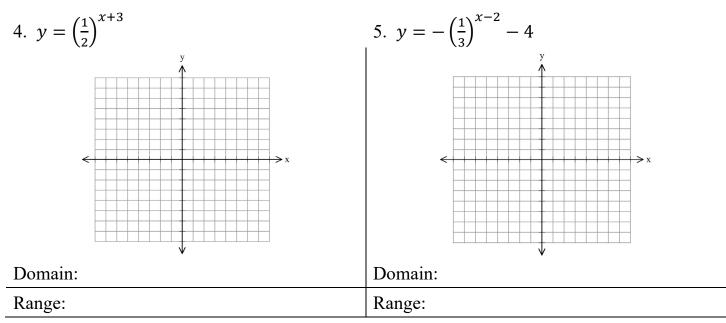
Use the graphing calculator to graph each of the following functions.

a.	$y = 2^{-x}$	d.	$y = \left(\frac{1}{2}\right)^x$
b.	$y = 3^{-x}$	e.	$y = \left(\frac{1}{3}\right)^x$
c.	$y = e^{-x}$	f.	$y = e^x$

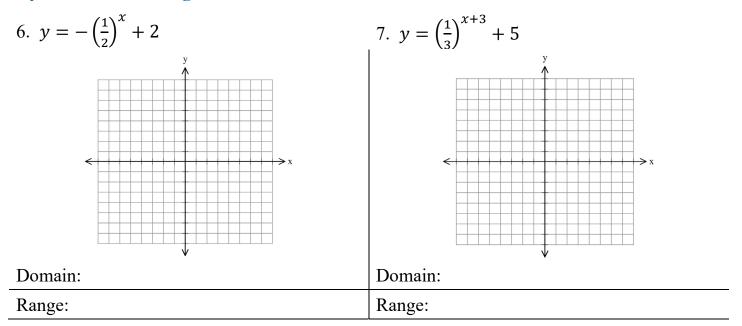
Which of these are exponential growth functions?

Which of these are exponential decay functions?

Examples:


- 1. The graph $f(x) = 2^x$ is translated two (2) units up, four (4) units right, & has a vertical reflection (reflected across the *x*-axis). Write the equation of the function after the transformation.
- 2. The graph $f(x) = e^x$ is translated down five (5) units. Write the equation of the function after the transformation.

You try !


3. The graph of $f(x) = \left(\frac{1}{2}\right)^x$ is translated two (2) units to the right, three (3) units up, and has a vertical stretch by a factor of four (4). Write the equation of the function after the transformation.

Examples:

Graph each exponential function. Describe the domain & range.

Try on of the following!

Examples:

Which of the following functions are examples of exponential growth & which are examples of exponential decay? Why?

8.
$$f(x) = 0.25(4)^x$$
 9. $h(x) = 0.9^x$

10.
$$g(x) = \left(\frac{3}{2}\right)^{-x}$$
 11. $s(x) = \frac{2}{3}(e)^{x}$

Try one of the following:

12.
$$k(x) = \left(\frac{2}{3}\right)^x$$
 13. $p(x) = \left(\frac{2}{3}\right)^{-x}$

10.4 Notes: Changing the Base of Exponential Functions

Use your graphing calculator to compare f(x) & g(x).

What do you notice about the graphs of each pair?

Use the properties of exponents to explain why	
f(x) = g(x)	

		f(x)	$\boldsymbol{g}(\boldsymbol{x})$
	А	$f(x) = 2^{3x}$	$g(x) = 8^x$
Ī	В	$f(x) = \left(\frac{1}{2}\right)^{2x}$	$g(x) = \frac{1^x}{4}$
	С	$f(x) = \left(\frac{3}{2}\right)^x$	$g(x) = \left(\frac{2}{3}\right)^{-x}$

Example:

Write each of the following exponential functions as the same function with a different base.

1. $f(x) = 2^{5x}$ 2. $g(x) = 25^x$

Try these!

3
$$f(x) = 3^{3x}$$
 4. $f(x) = 16^x$

Example:

- 5. Which of the following would NOT produce the same graph as $g(x) = 729^x$?
 - A. $h(x) = 3^{6x}$ B. $h(x) = 9^{3x}$ C. $h(x) = 6^{4x}$ D. $h(x) = 27^{2x}$

Rational Roots

Rational Exponents: $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ **Simplify:** a. $x^{4/3}$ b. $x^{5/2}$ c. $6^{5/3}$ Think back to previous units...apply properties & rules that we have learned about to simplify the following problems as best you can with a partner.

6.
$$9^{\frac{1}{2}} \cdot 9^{\frac{3}{2}}$$
 7. $\frac{3^{\frac{5}{6}}}{3^{\frac{1}{3}}}$ 8. $\sqrt[5]{27} \cdot \sqrt[5]{9}$

Examples:

Simplify the following expressions. Assume all variables are positive values.

9. $\frac{16^2}{2^3}$ 10. $\frac{3^2 \cdot 9^3}{3^4}$ 11. $x^{3/4} \cdot y^{2/3} \cdot x^{3/4} \cdot \sqrt[3]{y}$

12.
$$\frac{a^{1/3}\sqrt{b}}{a^{4/3}b^{1/2}}$$
 13. $\left(\frac{a^4b^{2/3}c^{1/5}}{a^6b^{1/3}c^{2/5}}\right)^5$ 14. $\left(\frac{-2x^3y^{1/3}}{3x^{2/3}y^{2/3}}\right)^3$

Try one of the following!

Simplify the following expressions. Assume all variables are positive values.

15.
$$\left(\frac{5^2}{5^4}\right)^{\frac{3}{2}}$$
 16. $\frac{64^{\frac{1}{2} \cdot 4}}{4^3}$ 17. $\left(\frac{-3\sqrt{a} \cdot b^{\frac{3}{4}}}{4a^{\frac{5}{2}}b^{\frac{1}{4}}}\right)^2$

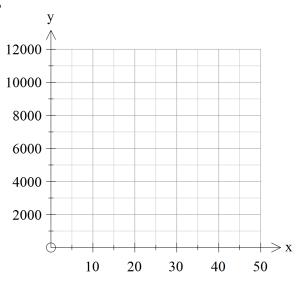
10.5 Notes: Modeling with Exponential Functions

Exponential Growth & Decay

Exponential Growth Formula: $A(t) = A_o(1+r)^t$

Exponential Decay Formula: $A(t) = A_o(1-r)^t$

Vocabulary

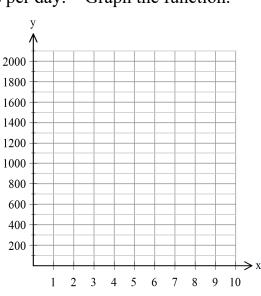

- Principle:
- Initial Amount:
- Rate:

- Compound Interest:
 - Compounded Annually
 - Compounded Quarterly
 - Compounded Monthly
 - Compounded Weekly
 - Compounded Daily
 - o Compounded Continuously

Example 1:

Janelle invests \$5000 in an account that earns interest at a rate of 2% compounded annually.

- a. Is this exponential growth or exponential decay?
- b. Write the function that gives the balance in the account after *t* years.
- c. Graph the function.
- d. Find the balance after 6 years.

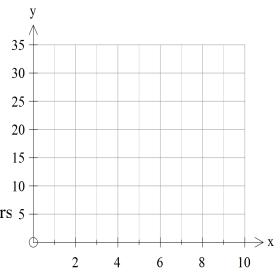


YOU TRY!

Example 2:

A bacteria population starts at 2,032 and decreases at about 15% per day. Graph the function. Then predict how many bacteria there will be after 7 days.

- a. Is this exponential growth or exponential decay?
- b. Write a function representing the number of bacteria present each day.
- c. Graph the function.
- d. Find the number of bacteria after 7 days.



Example 3:

The rate at which caffeine is eliminated from the bloodstream of an adult is about 15% per hour. An adult drinks a caffeinated soda, and the caffeine in his/her bloodstream reaches a peak level of 30 milligrams.

- a. Is this exponential growth or exponential decay?
- b. Write the function that gives the remaining caffeine at *t* hours after the peak level.
- c. Graph the function.

d. Find the amount of caffeine remaining after 4 hours 5

Example 4:

Keiko invests \$2700 in an account that earns 2.5% annual interest compounded <u>continuously</u>. How much money will she have in her account after 5 years? Use $A(t) = Pe^{rt}$.

Example 5:

You deposit \$5000 in an account that earns 3.5% compounded quarterly. How much money will you have after 3 years? Use $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$; where n is the number of times per year at an investment is compounded.

You try these!

Example 6:

Miguel invests \$4800 at 1.9% annual interest compounded continuously. How much money will he have in his account after 3 years? Use $A(t) = Pe^{rt}$.

Example 7:

Sarah deposits \$10,500 in an account that earns 6.7% compounded daily. How much money will Sarah have after 7 years? Use $A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$

10.6 Notes: Solving Exponential Equations

Property of Equality for Exponential Equations:

Work with a partner and try to find the value of *x*. Be prepared to share your process with the class.

$$2^{x+4} = 2^{2x+3}$$

Examples: Solve for x and check your solutions.

1)
$$2^{x-1} = 32$$
 2) $e^{3x} = e^{x+12}$

3)
$$\frac{1}{64} = 4^{2x-4}$$
 4) $9^{2x} = 27^{x+1}$

Try one of the following!

5)
$$15^{2x-9} = 15^{5x+6}$$
 6) $2^{3x+1} = \frac{1}{32}$ 7) $16^{3x} = 64^{x+2}$

.

. .

41

.

Unit 10 Notes

Examples: Solve each system of exponential equations for x by setting f(x) = g(x). Verify your answers using a graphing calculator.

8.
$$\begin{cases} f(x) = 3\\ g(x) = 27^x \end{cases}$$
9.
$$\begin{cases} f(x) = 5^{2x}\\ g(x) = 125^{x-2} \end{cases}$$

10.
$$\begin{cases} f(x) = e^{2x} \\ g(x) = e^{x+5} \end{cases}$$
 11.
$$\begin{cases} f(x) = 4^x \\ g(x) = 32^{x-3} \end{cases}$$

Example 12: Use your graphing calculator to solve the following problem

The equation $f(x) = 4.1(1.33)^x$ models the population of the United States, in millions, from 1790 to 1890. In this equation, x is the number of decades since 1790, and f(x) is the population in millions. In what year did the population reach 71 million?

- a. Let $f(x) = 4.1(1.33)^x$ & let g(x) = 71. To solve for x, find where f(x) = g(x).
- b. In what year did the population reach 71 million?

Example 13: Write an exponential function in the form $y = ab^x$ whose graph passes through the points (2, 12.5) and (4, 312.5).