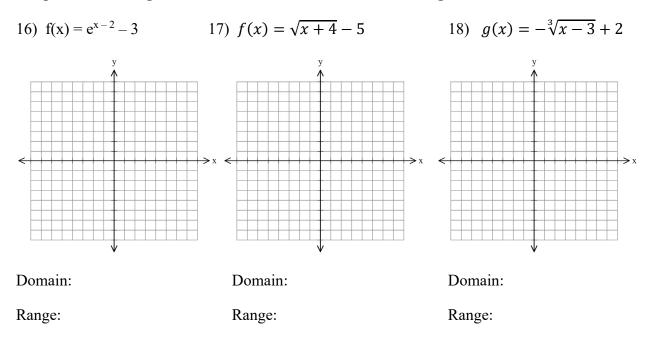
Algebra 2 11.1 Homework Name:

Write each expression in either exponential form or logarithm form.

1)
$$\log_3 81 = 4$$
 2) $4^0 = 1$ 3) $\log_5 0.2 = -1$ 4) $\left(\frac{1}{4}\right)^{-2} = 16$

Evaluate the logarithmic functions *without* a calculator.


5) log₄ 2 6) log₈ 1 7) log₃ 27

8)
$$\log_6 36$$
 9) $\log_3 243 + \ln(e^{10}) - \log_5 625$

10)
$$\log_2 32 - \log_{\left(\frac{1}{2}\right)} \left(\frac{1}{8}\right)$$
 11) $\ln(e^{5.41}) + \log 10^{6.59}$

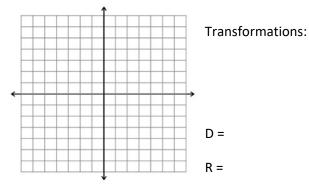
Simplify the following expressions.

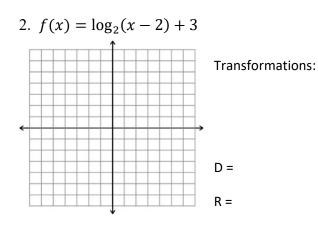
12)	$7^{\log_7 x}$	13) $\log_{11} 11^x$	14) $\log_6 36^x$	15) $e^{\ln 4x}$
14)	/	15/ 10611 11	14/ 1066 50	15) C

Graph the following functions and state their domain and range.

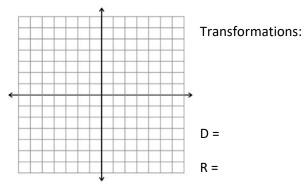
- 19) Simplify the expression: $\sqrt[4]{3e^{5x} \cdot 27e^{7x}}$
- A. $\frac{81e^{35x}}{4}$ C. $e^{3x} \cdot \sqrt[4]{30}$ **B.** $3e^{8x} \cdot \sqrt[4]{e^{3x}}$

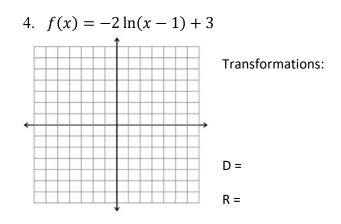
20) Simplify $\sqrt[3]{2x^4 \cdot 16x^8}$

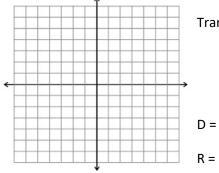

21) Simplify $\sqrt{e^{4x} \cdot e^{9x}}$

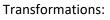

D. $3e^{3x}$

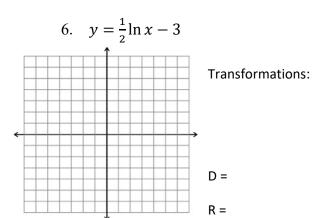
Algebra 2 11.2 Homework Name: _____


Graph the following functions. State the transformation from the parent function and the domain and range in set notation.

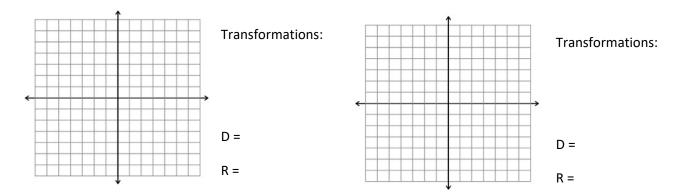

1. $y = \log_2(x + 1)$




3. $f(x) = \ln(x - 2)$



5. $y = -\log_3(x+1)$



8.
$$y = 3 \log_4(x+3) - 1$$

For #9 - #11, state the domain and range in set notation:

9.
$$y = \log_4(x+2) + 4$$
 10. $y = \log_2(x-4)$ 11. $y = -\ln x + 2$

Evaluate the logarithms *without* a calculator:

7. $y = \log_2(x - 3) - 1$

12. $\log_2 16$ 13. $\log_{\frac{1}{3}} 27$ 14. $\log_3 81 + \log_4 64 - \ln e$

Simplify:

15. $4^{\log_4 64}$ 16. $\log_5 25^{4x}$ 17. $e^{\ln 14}$

18. Find the inverse function of $g(x) = x^2 + 5$, over the domain $x \ge 0$. A. $g^{-1}(x) = \sqrt{x-5}$ B. $g^{-1}(x) = \sqrt{x-5}$ C. $g^{-1}(x) = x^2 - 5$ D. $g^{-1}(x) = \pm \sqrt{y-5}$ Algebra 2 11.3 Homework Name: _____

Evaluate the following logarithmic expressions using log 4 \approx 0.602 and log 7 \approx 0.845

1) $\log 28$ 2) $\log \left(\frac{49}{64}\right)$ 3) $\log \frac{1}{7}$ 4) $\log 112$

Expand the following expressions

5)
$$\log_3(13x)$$
 6) $\log_5\left(\frac{6x^4}{2y}\right)$

7)
$$\ln\left(\frac{z}{xy^2}\right)$$
 8) $\log_6\frac{5x^3}{y}$

Condense the following expressions

9)
$$\log 3 + 3 \log x - \log 5$$
 10) $2 \ln x - \ln 3 + \ln 6 + 12$

11)
$$3\ln(x+1) - 2\ln y + \ln 2$$

12) $\log 4 + 3\log x + \log y - 5$

Evaluate the following using the change of base formula. Give exact answers and approximate solutions rounded to 3 decimal places.

13) $\log_7 12$ 14) $\log_5(1.25)$ 15) $\log_{(2.2)} 22$ 16) $\log_6 24$

17) Simplify the expression to include only one natural logarithmic term:

 $3 \ln a + 2 \ln b - 4 \ln c + 5$

A.
$$\ln\left(\frac{a^{3}b^{2}}{c^{4}}\right) + 5$$

B. $\ln\left(\frac{a^{3} + b^{2} + 5}{c^{4}}\right)$
C. $\ln(a^{3} + b^{2} - c^{4} + 5)$
D. $\ln\left(\frac{30ab}{4c}\right)$

18) Solve:
$$4^{5x} = 64^{x+8}$$
 19) Solve: $\frac{1}{81} = 3^{2x+7}$

Algebra 2 11.4 Homework Name: _____

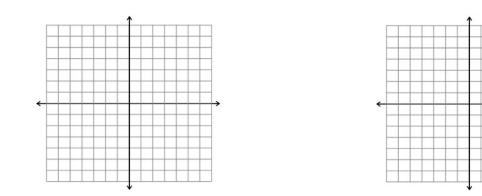
Solve each logarithmic equation and check for extraneous solutions. Round to the nearest hundredth when necessary.

1)
$$\ln(-5x+3) = \ln(2x+2)$$
 2) $\log_8(4x-7) = \log_8(x+11)$

3)
$$6 + \log_2 4x = 14$$

4) $\log_4(x) + \log_4(x+6) = 2$

5) $\log_2 x + \log_2(x-2) = \log_2 3$ 6) $\log_4 x = -1$


7) $7 - \log_3 8x = 2$ 8) $\log_2(x - 7) + \log_2 x = 3$ Find the mistake. Describe and correct the error in solving the equations.

9)
$$\log_{6}(x-1) + \log_{6} 3x = 3$$

 $\log_{6}[(x-1) + 3x] = 3$
 $6^{\log_{6}(4x-1)} = 6^{3}$
 $4x - 1 = 216$
 $4x = 217$
 $x = 54.25$
10) $\log_{3} 10x = 5$
 $e^{\log_{3} 10x} = e^{5}$
 $10x = e^{5}$
 $x = \frac{e^{5}}{10}$

11) The population of deer in a forest preserve can be modeled by the equation $P = 50 + 200 \ln (t + 1)$, where t is the time in years from the present. In how many years will the deer population reach 300?

Graph the functions and state the domain and range in interval notation.

12)
$$f(x) = -2 \cdot 3^{x-1} + 5$$
 13) $y = 4^{x+3} - 2$

14) Identify the HA and VA: $y = \frac{-2}{x+1} - 5$

Algebra 2 11.5 Homework Name: _____

Solve each exponential equation and check for extraneous solutions. Round to the nearest hundredth when necessary. For #1 and #2 give an exact solution as well.

1) $e^{2x} = 4$ 2) $9^x = 35$ 3) $10^{x+2} - 12 = 22$

Exact Solution:

Exact Solution:

Approximate Solution: Approximate Solution:

4) You deposit \$3000 in an account that pays 10% annual interest compounded quarterly. How long would it have to remain in the account to have a balance of \$3,500? Use the formula $r_{n,nt}$

$$A = P(1 + \frac{1}{n})^{nt}$$

5) How much must be deposited into an account that pays 5% interest compounded continuously in order for the balance at the end of 4 years to be \$3000? Use the formula $A = Pe^{rt}$

6) If \$400 is deposited in an account at a rate of 6.75% compounded continuously, find the amount of time for the balance to double. Use the formula $A = Pe^{rt}$

7) Three people in the business club are competing to see who can double their investment in the shortest amount of time. Each person starts with an initial amount of \$3000, but they each choose different investment scenarios. Who will double their investment first based on the following information? Justify your answer with work.

Person A	<u>Person B</u>	<u>Person C</u>
Interest compounded	Interest compounded	Interest compounded
quarterly	daily	continuously
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$
Rate: 6.2%	Rate: 5.9%	Rate: 5.7%

8) A microbiologist is studying a bacteria culture and determines that the population can be modeled by the equation $P = 324 \cdot e^{0.62t}$, where *t* is the time elapsed in hours. If the microbiologist begins an experiment at 10:00 a.m., what will the bacteria population be at 2:30 p.m.? Round your answers to the nearest whole number.

9) A standardized test has a normal distribution with a mean of 68 and a standard deviation of 7. Find the probability that a score is between 54 and 68.

10) A standardized test has a normal distribution with a mean of 68 and a standard deviation of7. Find the probability that a score is between 61 and 68 OR above 89.

Unit 11 Practice Test

Name

For #1 – 3, evaluate the expressions.

1) $\log_3 243$ 2) $\ln e^{-2}$ 3) $\log_8 \frac{1}{64}$

4) Simplify: $\log_7 49 + \ln(e^{12}) - \log_3 243$

For #5 – 7, rewrite each expression in exponential form or logarithm form. 5) $\log_5 125 = 3$ 6) $\log_6 \frac{1}{36} = -2$ 7) $64^{5/3} = 1024$

For #8 – 9, expand the expressions.

8) $\log\left(\frac{3x^4}{7y^3}\right)$

9)
$$\log\left(\frac{x^5y^2}{3z^4}\right)$$

For #10 - 12, use the change-of-base formula to evaluate. Give an exact solution and an approximate solution rounded to 3 decimal places.

10) $\log_8 5$ 11) $\log_2 6$ 12) $\log_5 7$

For #13 – 14, <u>condense</u> the expressions.

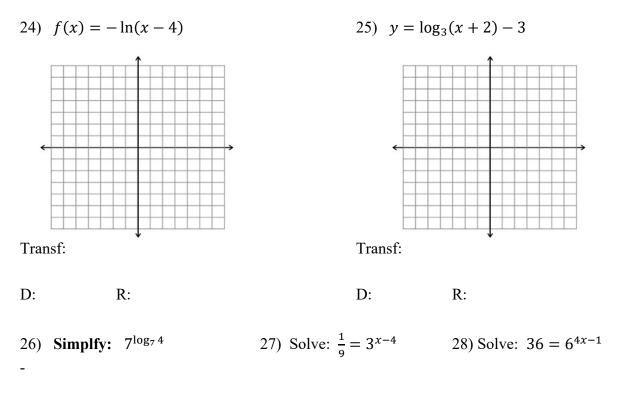
13)
$$4 \log_3 2 - 5 \log_3 x + \log_3 y + 6$$
 14) $3 \log_5 4 - \log_5 x - 6 \log_5 y$

For #15 -16, solve each equation. Give the exact solution.

15)
$$e^{0.06t} = 0.4$$
 16) $3^{0.2x} = 7$

For #17 -21, solve the equation. Check for extraneous solutions. Round to the nearest hundredth when necessary.

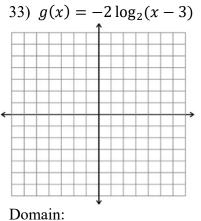
17)
$$\log_6(x-1) = 2$$
 18) $4^{-0.03x} + 5 = 8$


19)
$$\ln(x+9) = \ln(2x-7)$$
 20) $3\log_8 x - 5 = 4$

21) $\log_4(3x + 16) = \log_4 x + \log_4(x + 9)$

22) If \$2000 is invested at a rate of 3% compounded continuously, what amount of time would be needed to have a balance of \$2500? Use the formula $A = Pe^{rt}$.

23) If you invest \$600 earning 6.5% annual interest compounded monthly, how long will it take to double your investment? Use the formula $A = P(1 + \frac{r}{n})^{nt}$


29) Simplify: $\log_4 64 - \log_3 81 + \ln(e^3)$

For #30-31, solve the equation. Check for extraneous solutions. Round to the nearest hundredth when necessary.

30)
$$5\log_4(x-3) + 7 = 22$$
 31) $\log_5(3x+21) = \log_5 x + \log_5(x+7)$

32) State the domain and range (in set notation) of the function $y = \log_4(x + 4) - 2$

Graph the following function. State the domain and range.

Domain

Range: