For # 1 - 4, match graph to its to the correct equation in the box below. You will not use every equation.

1)

2)

3)

A)
$$y = x + 1$$

$$B) \ y = 2x + 5$$

A)
$$y = x + 1$$
 B) $y = 2x + 5$ C) $y = \frac{3}{4}x + 2$ D) $y = \frac{7}{2}x - 1$ E) $y = -x + 1$ F) $y = -\frac{7}{2}x - 1$ G) $y = -\frac{3}{4}x + 2$ H) $y = 2x - 5$

D)
$$y = \frac{7}{2}x - 1$$

E)
$$y = -x + 1$$

F)
$$y = -\frac{7}{2}x - 3$$

G)
$$y = -\frac{3}{4}x + 2$$

$$H) y = 2x - 5$$

For #5 - 10, sketch the graph of each linear equation.

5) $y = \frac{3}{5}x - 3$

6) y = 2x + 3

7) $y = -\frac{1}{4}x$

8) y = x + 2

9) y = -4x + 2

10) y = x

11) Find the slope and y-intercept of the line 3x - 5y = -15.

12) Aisha and Carolina each sketch a graph of the linear equation $y = -\frac{3}{4}x + 2$. Both students start by correctly plotting the y-intercept at (0, 2). Aisha then uses the slope to find a second point by moving down three units and to the right four units from the y-intercept. Caroline uses the slope to find a second point by moving up three units and the left four units from the y-intercept. Will their two graphs look the same? Explain your reasoning.

For #13 - 17, write the equation of the line going through the two given points. Write your answer in slope-intercept form.

13)
$$(3,1)$$
 and $(0,-4)$

14)
$$(0,1)$$
 and $(2,-2)$

15)
$$(-2, -1)$$
 and $(0, -5)$

16)
$$(-4, 0)$$
 and $(0, 2)$

18)
$$(-1, -5)$$
 and $(4, -2)$

19) Purposely deleted

- 20) Which of the following statements are true about the line $y = \frac{3}{4}x - 1$? Select all that apply. A) The slope of the line is -1.
- B) The line passes through the point $\left(0, -\frac{3}{4}\right)$.
- C) The line passes through the point (0, 1).
- D) The y-intercept of the line is (0, -1).
- E) The slope of the line is $\frac{3}{4}$.
- 22) Solve for a: 5 3(a + 1) = 4a + 2

Alg1 2.2 Worksheet

Name _____ Per ___

For #1-6: Write an equation of the line that passes through the given point and has a slope m.

Point and Slope	(-1, 6); m = 5	(10, 3); m = -2	$(-8, 1); m = -\frac{3}{4}$
(h, k) form:	1.	3.	5.
Slope-intercept form:	2.	4.	6.

For #7 – 8: Write an equation of the line shown in (h, k) form.

7.

8.

For #9 – 11. Write an equation in (h,k) form to represent the line passing through each set of points.

10.
$$\left(\frac{5}{8}, 5\right)$$
 and $\left(\frac{-3}{8}, 3\right)$

For #12-13: Write the equation of the line that passes through the given points in *slope-intercept form*.

12.
$$(-10, 7)$$
 and $(0, -3)$

13.
$$f(-5) = -3$$
 and $f(15) = 17$

Multiple Choice: For #14 - 15: Select the equation of the line in (h, k) form that passes through the points.

14.
$$\left(-\frac{2}{3}, 4\right)$$
 and $\left(\frac{1}{3}, 7\right)$

A $y = \left(x - \frac{2}{3}\right) + 7$

B $y = \left(x - \frac{1}{3}\right) + 7$

C $y = 3\left(x - \frac{1}{3}\right) + 7$

D $y = 3\left(x - \frac{2}{3}\right) + 4$

15. $f(4) = 1$ and $f(-2) = -4$

A $y = -\frac{5}{6}(x+4) - 4$

B $y = -\frac{2}{3}(x-2) - 4$

C $y = 5(x-4) + 1$

D $y = \frac{5}{6}(x+2) - 4$

A
$$y = \left(x - \frac{2}{3}\right) + 7$$

B
$$y = \left(x - \frac{1}{3}\right) + 7$$

C
$$y = 3\left(x - \frac{1}{3}\right) + 7$$

D
$$y = 3\left(x - \frac{2}{3}\right) + 4$$

15.
$$f(4) = 1$$
 and $f(-2) = -4$

A
$$y = -\frac{5}{6}(x+4) - 4$$

B
$$y = -\frac{2}{3}(x-2) - 4$$

C
$$y = 5(x - 4) + 1$$

$$\mathbf{D} \ \ y = \frac{5}{6}(x+2) - 4$$

Use the given table of values to write a linear equation for the given data in slope intercept form.

16.

x	1	2	3
f(x)	8	4	0

x	f(x)	
2	8	
6	10	
10	12	

For #18 – 20: A railroad system on a hillside moves passengers at a constant rate to an elevation of 50 meters. The table shows elevations for different locations.

18) Write an equation in slope-intercept form to represent the elevation of the train in terms of time. Decimal answers are okay.

Time in seconds x	Elevation in meters $f(x)$	
14	9	
24	20	

- 19) Find the rate of increase in meters per second.
- 20) Find the starting elevation.
- 21. Which of the following is a solution for the inequality statement shown below? (Choose ALL that apply).

$$7x + 9 \ge 12x - 6$$

#1 - 4: Identify the x- and y-intercepts of the graph of each equation.

1.
$$2x + 5y = 10$$

2.
$$3x - 4y = -24$$

$$x - int:$$
 ______ $y - int:$ _____

3.
$$10x + 5y = 120$$

4.
$$2x - y = 8$$

$$x - int: \underline{\qquad} y - int: \underline{\qquad}$$

#5 - 13: Sketch the graph of each function.

5.
$$2x - 4y = 8$$

6.
$$3x + 5y = 15$$

7.
$$3x - 6y = -12$$

9.
$$8x + 12y = -24$$

10.
$$4x = 10$$

11.
$$-6y = 3$$

12.
$$3y = -15$$

#14 – 17: Which line matches each equation?

14.
$$4x + 4y = -8$$

15.
$$3x - 2y = -6$$

16.
$$x + 2y = 2$$

17.
$$3x - y = 3$$

- **18.** Write an equation in (h, k) form that passes through the point (-4, 7) and has a slope of $\frac{1}{2}$.
- 19. Find the slope of the line containing the points (3,8) and (-2,6).

For # 1-4, determine if the lines given are parallel, perpendicular or neither.

1)
$$y = 2x - 4$$
 and $2x - y = 16$

2)
$$y = \frac{1}{2}$$
 and $y = -3$ (hint: sketch a graph of the situation)

3)
$$x = 4$$
 and $y = -3$

4)
$$y = -\frac{5}{2}x + 6$$
 and $-2x + 5y = -4$

For #5 - 8, write the equation in slope intercept form of the line that passes through the given point and is <u>parallel</u> to the given line.

5) Point (5, -4) and line $y = \frac{1}{5}x - 4$

Hint: 1) Decide what slope to use (parallel/perpendicular), 2) use the point and slope and write the equation in (h, k) form, and 3) distribute and simplify to get slope intercept form.

6) Point (2, 7) and line 3x - y = 5 (hint: change to y = mx + b first)

7) Point (-3, 2) and line y = -4 (hint: sketch a graph of the situation)

8) Point (6, 4) and line 2x + 3y = 16

For #9-12, write the equation in slope intercept form of the line that passes through the given point and is <u>perpendicular</u> to the given line.

- **9**) Point (-6, -3) and line $y = -\frac{2}{5}x$
 - Hint: 1) Decide what slope to use (parallel/perpendicular), 2) use the point and slope and write the equation in (h, k) form, and 3) distribute and simplify to get slope intercept form.

10) Point (0, 3) and line 3x - 4y = -8 (hint: change to y = mx + b first)

11) Point (-2, 5) and line x = 3 (hint: sketch a graph of the situation)

12) Point (4, 3) and line 4x - 5y = 30

For #1 - 3: Graph the line that represents each linear equation.

1.
$$y = -5x + 1$$

2.
$$y = \frac{2}{3}x - 5$$

3.
$$y = -2(x+1) - 3$$

For #4-5: Write the equation, in slope-intercept form, of the given graphs below.

4.

5.

For #6 - 8: Write the equation of each line with the given information in the requested form.

6. slope = 4; y-intercept = -2; slope-intercept form.

7. through (-5, 1); slope = -3; in (h, k) form and slope-intercept form.

8. (9, 2) and (-3, -2); in (h, k) form **and** slope-intercept form.

For #9 - 14: Graph the line that represents each linear equation.

9.
$$-5x + y = -5$$

10.
$$4x - 12y = -24$$

11.
$$-3x - 6y = 12$$

12.
$$5x = -15$$

13.
$$6x + 8y = 24$$

14.
$$-4y = -20$$

15. Zachary has \$500 in savings and will be adding \$75 each month to save up for a trip this summer. Write an equation that models the amount A after *m* months? What does the slope signify in Zachary's equation? What does the *y*-intercept signify in his equation?

For #16 - 18: Find the x- and y-intercepts of each equation.

16.
$$4x - 5y = 80$$

17.
$$7x + 8y = 112$$

18.
$$-8x + 12y = -144$$

For #19 - 20: Write an equation, in slope-intercept form, for the line that passes through the given point and is parallel to the graph of the given equation.

19.
$$y = 3x - 2$$
; (3, 2)

20.
$$3x + 4y = 12$$
; (-4, 7)

For #21-22: Write an equation, in slope-intercept form, for the line that passes through the given point and is perpendicular to the graph of the given equation.

21.
$$y = -2x - 1$$
; (2, -1)

22.
$$y + 4 = \frac{2}{3}(x - 2); (4, -2)$$

For #23 – 24: Determine whether the graphs of the given equations are parallel, perpendicular, or neither.

23.
$$y = 4x + 5$$
 $2x + 8y = 16$

24.
$$y - 7x = 3$$
 $14x - 2y = 28$

For #25 - 26, write the equation of each line described.

- **25.** The vertical line passes through (7, -2).
- **26.** The horizontal line passing through (7, -2).
- **27.** Gerry has \$400 and wants to buy pants and shirts. The pants cost \$30 each pair, and the shirts cost \$30 each. Write an equation to represent the situation with Gerry buying *x* pairs of pants and *y* shirts.