Formal Geometry Do all work on your own paper!

4.4 Worksheet

1) Given: *CE* bisects $\angle BED$; $\angle BCE$ and $\angle ECD$ are right angles.

Prove: $\Delta ECB \cong \Delta ECD$

2) Given: V is the midpoint of YW. $UY \parallel XW$.

Prove: $\Delta UVY \cong \Delta XVW$

3) Given: $\angle W \cong \angle Y$, $\overline{YZ} \cong \overline{WZ}$, \overline{XZ} bisects $\angle WZY$.

Prove: $\Delta XWZ \cong \Delta XYZ$

4) Given: $\angle BCE$ and $\angle ECD$ are right angles,

 \overline{CE} bisects $\angle BED$.

Prove: $\Delta ECB \cong \Delta ECD$

5) Are the following triangles congruent? If so, which theorem did you use?

6) Given: $\angle F \cong \angle J$, $\overline{FH} \mid \mid \overline{GJ}$ Prove: $\overline{FH} \cong \overline{GJ}$

7) Are the following triangles congruent? If so, which theorem did you use?

S

12) In the figure $\angle GAE \cong \angle LOD$ and $\overline{AE} \cong \overline{DO}$. What information is needed to prove that $\triangle AGE \cong \triangle OLD$ by SAS?

A.
$$\overline{GE} \cong \overline{LD}$$

B.
$$\overline{AG} \cong \overline{OL}$$

C.
$$\angle AGE \cong \angle OLD$$

D.
$$\angle AEG \cong \angle ODL$$

13) Which of the following sets of triangles can be proved congruent using the AAS Theorem?

14) If $\triangle ABC \cong \triangle DEF$, which of the following is true?

A.
$$\angle A \cong \angle D, \overline{BC} \cong \overline{EF}, \angle C \cong \angle F$$

B.
$$\angle A \cong \angle D, \overline{AB} \cong \overline{DF} \angle C \cong \angle E$$

C.
$$\angle A \cong \angle F, \overline{BC} \cong \overline{AC}, \angle C \cong \angle D$$

D.
$$\angle A \cong \angle E, \overline{DF} \cong \overline{EF}, \angle C \cong \angle F$$

Selected Answers:

	1)	Given:	CE	bisects	∠BED:
--	----	--------	----	---------	-------

 $\angle BCE$ and $\angle ECD$ are right angles.

Prove: $\Delta ECB \cong \Delta ECD$

1) <i>CE</i> bisects $\angle BED$;
/ RCE and / ECD are right angles

$\angle D$	$\cup E$	anu	$\angle E$	JD	are	Hgnt	angi	es.
- 1					_			

2) $\angle BEC \cong \angle DEC$ 2) If a ray bisects \angle , then it divides it into $\cong \angle s$

3) ∠*BCE* ≅ ∠*ECD* 3) If $2 \angle s$ are right $\angle s$, then they are \cong .

4) $CE \cong CE$ 4) Reflexive Property

5) $\Delta ECB \cong \Delta ECD$ 5) ASA (2, 4, 3)

2) Given: V is the midpoint of YW. $UY \parallel XW$.

Prove: $\Delta UVY \cong \Delta XVW$

1)	17:04-00-00:0	1 C T	7147 1117	11 32147
Ι,	V is the mid	i io Jiiiodi	W.UI	$\parallel \Lambda VV$.

- 2) $YV \cong VW$
- 3) $\angle U \cong \angle X$ and $\angle Y \cong \angle W$
- 4) $\Delta UVY \cong \Delta XVW$

Note: if vertical angles were used, could have

۷)	11	111	Iu	ŀ
3)	Ιf	//	lir	١.

1) Given

1) Given

- 2) If midpoint, then divides the seg into 2≅ segments.
- 3) If // lines, then alt interior angles are congruent.
- 4) AAS (3, 3, 2)

proven this by using ASA.

3) 3 steps 4) 5 steps	6) Yes, by ASA
, 1	, , , , , , , , , , , , , , , , , , ,

6) **Given:** $\angle F \cong \angle J, \overline{FH} || \overline{GJ}$

Prove: $\overline{FH} \cong \overline{GJ}$

l)	$\angle F$	\cong	4	FH	<i>G1</i>

1) Given

- 2) $\overline{GH} \cong \overline{GH}$ 2) Reflexive Property
- 3) $\angle FHG \cong \angle JGH$

3) If \parallel lines, then alt int \angle s are congruent.

4) $\Delta FHG \cong \Delta JGH$

4) AAS (1, 3, 2)

5) $\overline{FH} \cong \overline{GI}$

5) CPCTC: Corresponding Parts of Congruent Triangles are Congruent

7) Yes, by AAS.

8) 7 steps

9)

Given: $\overline{MN} \cong \overline{NS}$, $\overline{MP} \cong \overline{PS}$ Prove: ∠MQP ≈ ∠SQP · R

1)	$\overline{MN} \cong \overline{NS}, \overline{MP} \cong \overline{PS}$	

- 1) Given
- 2) $\overline{PN} \cong \overline{PN}$

2) Reflexive

3) $\Delta MPN \cong \Delta SPN$

3) SSS(1,1,2)

4) $\angle MPQ \cong \angle SPQ$

4) CPCTC

5) $\overline{PQ} \cong \overline{PQ}$

5) Reflexive

6) $\Delta MPQ \cong \Delta SPQ$

6) SAS(1, 4, 5)

7) $\angle MQP \cong \angle SQP$

7) CPCTC

- 10) $AB \cong XY$
- 11) 90.6°
- 12) B
- 13) B
- 14) A
 - 15) 28.1