10.1 Notes: Arc and Central Angles in Circles

Objectives:

- Students will be able to find missing central angles in a circle.
- Students will be able to find the measure of arcs in a circle.

Central Angle of a Circle	A central angle of a circle has its vertex on the <u>center</u> of the circle, and its rays are the <u>radius</u> of the circle.	
Arc of a Circle	An arc of a circle is a of the circumference of the circle. In other words, it is part of the curved outer portion of the circle.	Arc O

Exploration: Use the following link to explore the relationship between a central angle and its arc: https://www.geogebra.org/m/pwa6zQtq Move points B and C around, and watch how the measures of the central angle and the enclosed arc change. Make a conjecture about the relationship between a central angle and its arc:

Measure of	The measure of an arc is <u>Congruent</u> to the measure of its	50° B
an arc	central angle.	If m∠APB=50°, then m AB=50°
Measure of a semi-circle	A semicircle is an arc formed by the diameter of a circle, and its measure is 180° degrees.	SEMI-CIRCLE SEMI-CIRCLE
Total number of degrees in a circle	Any circle has a total measure of degrees.	360°

For #1-6: Find the measure of the variable(s) for each diagram. Assume a segment that looks like a diameter is a diameter.

1)

2)

x = 36

You try #3 - 6!

3)

$$x = 180$$

 $y = 92$
 $z = 88$

5)

You try! 6)

C&41° are vertical <s

> d + e = 9041+e=90 -41 -41

67 te+30 =180

Arc Addition **Postulate**

The Arc Addition Postulate states that arcs that are adjacent can be added to find the measure of a larger arc.

mPQR = mPQ + mQR

Minor Arc

An arc with a measure

An arc with a measure

than 180°

Major Arc

greater than 180°. To name a major arc 3 letters are used. Follow the order in which they are written to calculate measure.

7) Find the measure of each arc or angle (assuming \overline{KN} and \overline{QT} are diameters). Note: If an arc is named with three letters, it is called a major arc. The measure is calculated the long way around the circle. Follow the order of the letters.

A. measure of $\hat{Q}\hat{N}$

44°

B. measure of \widehat{SQ}

D. measure of \widehat{QNK}

44°+180°=

180

E. measure of $\angle TRN$

180°-44°=

- F. measure of ONS 44 + 180 + 86 = 310° or 360°-50° = 310°

C. measure of $\angle SRN$

50° + 44° =

S 44° 86°

You Try! 8) Find the measure of each arc.

A. measure of
$$\widehat{GE}$$

 $80 + 40 = 120^{\circ}$

B. measure of
$$\widehat{GEF}$$

 $40 + 80 + 110 = 230^{\circ}$

C. measure of
$$\widehat{GF}$$

$$360 - 230 = \boxed{130^{\circ}}$$

For #9-10: Find the value of the variable.

9)

$$5x-13 = 106$$

+13 + 13
 $5x = 119$
 $5x = 23.8$

$$(2x + 80)^{\circ}$$

$$3x^{\circ}$$

$$A$$

$$3x+2x+80=180^{\circ}$$
 $5x+80=180$
 $-80=80$
 $-80=180$
 $-80=80$
 $-80=180$
 $-80=180$
 $-80=180$
 $-80=180$
 $-80=180$

10.2 Notes: Inscribed Angles

Objectives:

• Students will be able to use the relationship between inscribed angles and arcs to find missing measures.

Exploration: Use the given link to explore the relationship between inscribed angles and their enclosed arcs: https://www.geogebra.org/m/yX6FgbPA

- ✓ Click on "Inscribed Angle", and move around points B and C.
- ✓ Make a conjecture comparing the measure of an inscribed angle and its arc.

Inscribed Angle of a Circle	An inscribed angle of a circle has its <u>Vertex</u> on the circle.	$\angle ADB = \frac{1}{2} \overrightarrow{AB}$ Twice
Measure of an Inscribed Angle	The measure of an inscribed angle is equal to of the measure of its enclosed arc.	Half as big as AB

Ch. 10 Notes: Circles

DRHS

- 7) Find the requested measures for circle B, as shown.
 - A) measure of ∠1

C) measure of \widehat{DA}

B) measure of \widehat{AE}

D) measure of \widehat{DEA}

$$40 + 150 + 30 =$$
 1220°
 $140 = 220^{\circ}$

B diameter 40° 150°

For #8 - 9, find the value of x.

8x-1=126 X=15.875

You try! 9)

 $= \begin{pmatrix} 2(x+11) = 3x-20 \\ 2(x+11) = 3x-20 \\ -2x+22 = 3x-20 \\ -2x \end{pmatrix}$

Angle Inscribed in a Semicircle

An angle inscribed in a semi-circle has a measure of degrees.

For #10 - 11: Find each variable, given that AB is a diameter.

10)

11)

0=35.2

d=35

C=55.2 6

Ch. 10 Notes: Circles

DRHS

$$y = 180^{\circ}$$

 $y = 110^{\circ}$
 $z = 70^{\circ}$
 $w = 35^{\circ}$

For #13 – 16: Find each variable, given that PQ is a diameter.

14)

15)

16)

10.3 Notes: Chords and Tangent Segments in Circles

Objectives:

- Students will be able to solve problems using chords in circles.
- Students will be able to solve problems involving tangent segments with circles.

Chord

A chord is a segment whose endpoints lie On a circle.

Exploration: Use this link to explore relationships between central angles, chords, and arcs: https://www.geogebra.org/m/U76G7TtB

- ✓ Click on the boxes for ANGLES, CHORDS, and ARCS.
- ✓ Move points A, B, C, and D around the circle.
- ✓ Write a conjecture about the relationships between chords and arcs that have the same central angle.

Chord-Arc Property In one circle (or two congruent circles), if two chords are <u>Congruent</u>, then their intercepted arcs are also <u>Congruent</u>.

If $\overline{AB} = \overline{CD}$ on $\overline{AB} = \overline{CD}$ then $\overline{AB} = \overline{CD}$ on then $\overline{AB} = \overline{CD}$

For #1-2: Find each variable.

1)

2)

5x = 3x +51

¥=54 ×=27

Ch. 10 Notes: Circles

DRHS

You try #3 - 4! Find each variable.

3)

9x - 34 = 4x + 1

5) Find *x*.

6x-20 76+6x-20+6x-20=36012x +36=360

$$\frac{12x = 324}{12}$$

$$x=27$$

Tangent to a Circle

A tangent segment will intersect a circle at exactly one point. A + B are points on the line and points on the circle

Tangent Segments and Radii

A tangent segment is always Derpendicular to the radius

drawn from the center of the circle

to the point of tangency.

Tangents Drawn from the Same **Point**

Two tangent segments drawn from the same external point are Congruent to each other.

Demonstration of the relationship between tangent segments and radii:

https://www.geogebra.org/m/xbAwK5Pd

Ch. 10 Notes: Circles

DRHS

For #6-11: Find the variable or segment. Assume that segments that appear to be tangent are tangent.

6)

7) Find AB.

$$4+6=x^{2}$$
 $16+36=x^{2}$
 $52=x^{2}$

$$\int 52 dx$$

$$x = \int 52 = 1$$

You try #9-11!

9) Find BC.

10)

$$2x+5=3x-2$$

$$-2x$$

$$5=x-3x$$

$$\frac{2}{1\times=7}$$

11)

a=10

Challenge! 12) Find x.

$$8+x=17$$
 -8
 $x=9$

10.4 Notes: Area of Circles and Sectors

Objectives:

- Students will be able to find the area of circles and sectors.
- Students will be able to find the area of shaded regions.

Area of a Circle

Reminder: the area of a circle can be found by using:

$$A = \pi r^2$$

$$\uparrow = 3.14...$$

r=radius diameter is twice the radius

For #1-2: Find the area for each circle shown. Write your answers in terms of pi.

1)

2)

3) A circle has an area of 49π in². Find the length of the radius and diameter of the circle.

$$\frac{49\pi l \ln^2 = \pi r^2}{\pi}$$
 $\sqrt{49 \ln^2 = r^2}$ 7.2 $\sqrt{49 \ln^2 = r^2}$ $\sqrt{d} = 14 \ln r$

You try! 4) A circle has an area of 121π cm². Find the length of the radius of the circle.

$$A = \pi r^{2}$$
 $12\pi cm^{2} = \pi r^{2}$
 $\sqrt{121} cm^{2} = \sqrt{r^{2}}$

Ch. 10 Notes: Circles

DRHS

Exploration: Amy is buying a rug with a radius of 4 feet, as shown.

A) What is the area of the rug?

$$A = \pi r^2$$

$$= \pi (4ft.)^2$$

the area of the rug?
$$= \pi r^{2}$$

$$= \pi \left(4ft.\right)^{2} = 16\pi ft^{2}$$

B) Amy finds another rug with the same radius but that is exactly half of a circle (called a semicircle). What is the area of this rug?

half of
$$\rightarrow \frac{16\pi ft^2}{2} = 8\pi ft^2$$

C) Amy now finds a rug with the same radius, but it is only a quarter of a circle. What is the area of this rug?

Sector of a Circle

A sector of a circle is a pie-shaped slice of a arc of a circle.

(plural of radius) arc of a circle.

Area of a Sector

The area of a sector can be found by finding a fraction of the area of a circle.

For #5-6: Find the area of each sector, to the nearest tenth.

5)

6)

 $A = \frac{80}{360} \pi (4)$

$$A = \frac{100}{360} \cdot TT \left(7 \text{ cm}\right)^2$$

Ch. 10 Notes: Circles

DRHS

You try #7-8! Find the area of each sector, to the nearest tenth.

240

For #9-10: Find the area of each shaded sector, to the nearest tenth.

$$A = \frac{240}{360} \cdot \pi \cdot 9^2$$

You try! 10)

$$A = \frac{270}{360} \cdot \pi \cdot (1000)^2$$

$$A = \frac{270.100 \text{ m}}{360}$$

$$A = 235.6 \text{ cm}^2$$

11) A sector has a measure of 60 degrees, and a radius of 9. Find the area of the sector as an exact answer in terms of pi.

 $A = \frac{60}{360} \cdot \Pi \cdot 9^2 = \frac{60.81 \cdot \Pi}{360}$

13.5TT units

For #12 – 13: Give an exact answer in terms of pi.

- 12) Find the area of the shaded region.
- 13) Find the area of the shaded region.

Area of circle

A= 6 h

Shaded is 10 cm

Area of square

(100-25TT) cm² A = 100 cm² Area of circle

13

2511

Shaded area is Circle - rectangle = 48cm²

10.5 Notes: Circumference and Arc Length

Objectives:

- Students will be able to use the circumference of circles to solve problems.
- Students will be able to find the length of an arc.

Circumference of a Circle

Reminder: the

circumference of a circle can by found by using:

$$2r=d$$

$$C = 2\pi r$$
 or $C = d\pi$

For #1-2: Find the circumference of each circle shown. Write your answers in terms of pi.

Circumference

1)

2)

3) A circle has a circumference of 36π in. Find the area of the circle.

$$C = d\pi$$

$$\frac{36\pi}{4} \text{ in } = d\pi$$

$$V = \frac{36}{3} = 18$$
in

You try! 4) A circle has a circumference of $12\pi m$. Find the area of the circle.

Ch. 10 Notes: Circles

DRHS

Length of an Arc

The length of an arc is a distance of a curve between two points on a circle.

It is part of the <u>Circum ference</u> of a circle.

Note: The length of an arc is NOT the same as the measure of an arc.

Arc Length Formula The length of an arc (arc length) can be found by finding a <u>fraction</u> of the circumference of a circle.

 $\ell = \frac{m}{360} \cdot 2\pi r$ or $\ell = \frac{m}{360} \cdot d\pi$

For #5-8: Find the length of \overrightarrow{PQ} . Round answer to the nearest tenth.

5)

 $l = \frac{136.2 \cdot \pi.12}{360} = 28.5$

6)

60°

l= 137.2.T.7mm

137.2.7·TT

r=7mm.

l = 16.7 mm

You try #7 - 8!

7)

8)

 $l = \frac{60}{360} \cdot 2 \cdot \pi \cdot 9$

 $n=60 = \frac{9}{units}$

Ch. 10 Notes: Circles

DRHS

9) An arc has a measure of 90 degrees, and a diameter of 16. Find the length of the arc as an exact answer in terms of pi.

$$m=90$$
 $d=16$

$$l = \frac{90}{360} \cdot 2.77.8$$
 or $\frac{90}{360} \cdot 16.77$

$$\frac{1.16}{36}\pi = \frac{199}{36}$$

You try! 10) An arc has a measure of 60 degrees, and a radius of 9. Find the length of the arc as an exact answer in terms of pi.

$$m=60$$

$$r=9$$

$$d=18$$

$$m = 60$$
 $l = 60$. 18 T $r = 9$ 360 $d = 18$

$$\frac{1.18\pi}{6} = \boxed{3\pi \text{ units}}$$

11) An arc has a length of 10π cm and a radius of 20 cm. Find the measure of the arc.

$$\ell = \frac{m}{360} \cdot 2\pi r$$

360.
$$10\pi \text{ cm} = \frac{\text{m} \cdot 2 \cdot \pi \cdot 20 \text{ cm} \cdot 360}{360}$$

 $3600 \pi = 40\pi \text{ m}$ $m = 90^{\circ}$

$$m = 90^{\circ}$$

You try! 12) An arc has a length of 12π cm and a radius of 48 cm. Find the measure of the arc.

mas a length of
$$12\pi$$
 cm and a radius of 48 cm. Find the measure of the $l = 12\pi$ cm $= 48$ cm $= 48$ cm $= 48$ cm $= 48$ cm $= 45$ ° $= 45$ ° $= 46$ cm $= 46$ cm $= 45$ ° $= 46$ cm $= 46$ cm

$$360 12 = \frac{m.96.360}{360}$$

$$\frac{4320^2 = 960}{9600}$$
 $\frac{9600}{96}$
 $\frac{9600}{96}$