9.1 Notes: Angles of Quadrilaterals and Polygons

Objectives:
• Students will be able to find missing angles in a quadrilateral.

Students will be able to find the sum of the angles in a polygon.

Exploration: Use the following TWO links: https://www.geogebra.org/m/XjSKUQBz and https://www.geogebra.org/m/xybvZyhv. Move the vertices of the quadrilateral around and observe what happens to the angles. Make a conjecture about the sum of the angles in a quadrilateral.

Sum of the Angles in a Quadrilateral

For #1-4: Find the missing angle in each quadrilateral.

1)

7+85+95+120=3602)

90 146° W +90+90+ 146=360

$$w + 326 = 360$$

$$-320$$

You try #3 - 4!

3)

4)

90

For #5-8: Find the value of the variable.

You try #7 – 8! Round to one decimal place, if needed.

$$17 \times 470 = 360$$
 $-70 = -70$
 $17 \times = 290$
 $17 \times = 17.1$

8)
$$\frac{2x^{\circ}}{3x+10)^{\circ}}$$

$$3x+10+2x+65+128=360$$

$$x=31.4$$

9) Find the measure of the largest angle in the quadrilateral shown below.

$$8x + 3x + 30 + 9x - 10 + 5x + 20 = 360$$

$$25x + 40 = 360$$

$$-40 - 40$$

$$25x = 320 + (50 = 9(12.8) - 10 = 105.2)$$

$$25x = 320 + (50 = 9(12.8) - 10 = 105.2)$$

$$25x = 12.8$$

$$68 = 8(12.8) = 102.4$$

$$68 = 8(12.8) = 102.4$$

$$69 = 9(12.8) + 30 = 68.4$$

$$69 = 9(12.8) + 10 = 105.2$$

$$69 = 9(12.8) + 10 = 105.2$$

$$69 = 9(12.8) + 10 = 105.2$$

10) All four angles of a quadrilateral are congruent to each other. Find the measure of each angle in the quadrilateral.

$$x + x + x + x = 360$$
 $= \frac{4x = 360}{4} = \frac{1}{1} = 90^{\circ}$

Ch. 9 Notes: Quadrilaterals

DRHS

Sum of the Angles in a Polygon The sum of the angles of a polygon can be found by using the formula

180(n-2)

, where n is the number of sides.

For #11 - 16, find the sum of the angles in each polygon.

11) octagon = 8

12) hexagon
$$= 6$$

13) nonagon = 9

You try #14 - 16!

14) pentagon
$$= 5$$

15) decagon = 10

16) quadrilateral = 4

The Measure of One Interior Angle of a Regular Polygon The measure of one interior angle of a regular polygon can be found by

using the formula $\sqrt{80(N-2)}$

where n is the number of sides.

17) Assume all the angles of a hexagon are congruent (the hexagon is <u>regular</u>). Find the measure of *one* interior angle of the hexagon.

$$\frac{180(6-2)}{6} = \frac{720^{\circ}}{6} = 120^{\circ}$$

You Try!

18) Find the measure of one angle of a regular pentagon.

9.2 Notes: Parallelograms

Objective:

• Students will be able to use properties of parallelograms to solve problems.

Exploration: A parallelogram is a quadrilateral that has both pairs of opposite sides parallel. Use the given link to fill in the properties of a parallelogram in the table below: https://www.geogebra.org/m/amdzUqFu

Opposite Sides of a Parallelogram	The opposite sides of a parallelogram are <u>congruent</u> and <u>parallel</u> .	A D
Opposite Angles of a Parallelogram	The opposite angles of a parallelogram are <u>congruent</u> .	A D
Consecutive Angles of a Parallelogram	The consecutive angles of a parallelogram are Supplementary.	$A + < B = 180^{\circ}$ $< B + < C = 180^{\circ}$
Diagonals of a Parallelogram	The diagonals of a parallelogram bisects each other.	A D D

Ch. 9 Notes: Quadrilaterals

DRHS

1) Find the measure of the missing angles and the lengths of the missing sides.

$$\angle A = 48^{\circ}$$
 $\angle B = 132^{\circ}$
 $\angle D = 132^{\circ}$
 $BC = 12 \text{ cm}$
 $CD = 8 \text{ cm}$

You Try!

2) Find the measure of the missing angles and the lengths of the missing sides.

For #3-6: Given that each quadrilateral shown is a parallelogram, find the value of the variable(s). Use the properties that opposite angles are congruent and consecutive angles are supplementary.

X=14

For #7-8: For each parallelogram shown below, find each variable. Use the property that states that opposite sides are congruent.

7)

You try! 8)

For #9-11: Find the value of each variable, given that the quadrilateral is a parallelogram. Use the property that states the diagonals bisect each other.

9)

10)

$$b = \frac{10}{3}$$

You try!11)

12) What is the measure of $\angle F$ in Parallelogram FGHJ?

 $\overline{FG} = 3x - 44$

$$\overline{HI} = 61$$

$$m \angle G = (4x + 10)^{\circ}$$

4x+10+<F=180 what is x?

9.3 Notes: Rectangles and Squares

Objectives:

• Students will be able to solve problems using properties of rectangles & squares.

Exploration: Use this link to fill in the properties of rectangles in the table below: https://www.geogebra.org/m/RCAX5KZa

Opposite Sides of a Rectangle	The opposite sides of a rectangle are paralle and congruent.	11 >>
Angles of a Rectangle	The angles of a rectangle are each a angle.	J L
Diagonals of a Rectangle	The diagonals of a rectangle are <u>Congruent</u> and <u>bisect</u> each other.	

For #1–3: Find the perimeter of each shape shown below. Use the property that says opposite sides of a rectangle are congruent.

For #4-5: Find the missing variables for each rectangle. Use the properties that the diagonals of a rectangle are congruent and bisect each other.

$$10 = 2a + 7$$

$$10 = 2a + 7$$

You try! 5)

6) A rectangle has a length of 7 cm and a width of 24 cm. Find the length of one diagonal.

Hint: draw a diagram.

7 cm =	X
1-1-	24 cm

72	+242	- =	X2
49	+576	=	X
J	625=	X	25

4
Angles of a Square

Sides of a Sauara

Diagonals of a Square

For #7-11: Find the missing variables in each square.

7)

8)

10)

11)

12) A square has a perimeter of 32 inches. Find the area of the square. (Reminder: $A = s^2$)

$$\frac{s}{s}$$
 $\frac{4s = 32}{4}$ $A = s^2$
 $s = 8$ $A = 8^2$
 $A = 64 \text{ in}^2$

13) Find the perimeter of the square shown below.

 $10\sqrt{2}$ 10

Ch. 9 Notes: Quadrilaterals

DRHS

14) Given that a rectangle and a square both have a perimeter of 24 mm. If the length and width of the rectangle is 3 cm and 9 cm, then which has the larger area, the square or the rectangle?

2v

$$s \int_{\delta}^{S} s \frac{4s = 24 \text{ mm}}{4}$$

$$s = 6 \text{ mm}$$

$$A = 6^2$$

A=36 mm²

Square has larger area

Challenge! Solve for the variables in the rectangle below.

$$2(7) = x$$

$$14 = x$$

the system using Substitution

$$2(2y) + 8y + 6 = 90$$

 $4y + 8y + 6 = 90$

$$\frac{12y}{12} = 84$$

$$y=7$$

9.4 Notes: Rhombi and Kites

Objectives:

- Students will be able to name regular polygons by the sides.
- Students will be able to find the area of a regular polygon.

Properties of a Rhombus	Sides	A rhombus is a parallelogram where all four sides are
	Diagonals	The diagonals of a rhombus are <u>perpendicular</u> orsectors of each other.
	Diagonals and Angles	The diagonals of a rhombus bisect the angles of the rhombus.

For #1-3: Find the variables in each rhombus.

1)

2)

You try! 3)

11

Ch. 9 Notes: Quadrilaterals

DRHS

For #4-6: Find the missing variable in each rhombus.

4)

5)

You Try! 6)

$$a = 13$$

$$y = 13$$

5-12-13 triple or $5^2 + 12^2 = a^2$ a = 13 y = 13 y = 13 a = 13 a = 13

For #7-8: Find the measure of each variable for each rhombus shown below.

7)

You Try! 8)

9) Find the perimeter of the rhombus shown below.

rhombus shown below. P= distance around outside

$$7^{2}+24^{2}=x^{2}$$
 or $7-24-25$ triple
 $25+25+25+25=100$ units)

Ch. 9 Notes: Quadrilaterals

DRHS

W=10

erties of a Kite	Sides	A kite is a quadrilateral that has two pairs of consecutive sides that are
erties		One diagonal of a kite is

the perpendicular other.

Note: there are other properties about kites (specifically about the angles) that we are not studying this year.

For #10-11: Find the measure of each variable for each kite shown below. W=X

b=552 10) 5-12-13 5

Diagonals

C=5/2

a=90

d=13

You Try! 11)

12) Find the perimeter of the kite shown below.

12

5+5+8+8 = 726 units

