8.1 Notes: Area of Triangles and Circles

Objectives:

- Students will be able to find the area of a triangle.
- Students will be able to find the area of a circle.

Height of a Triangle Base of a Triangle	The height of a triangle forms a right angle with one side of the triangle. The height may not be an actual side of a triangle. The base of a triangle is a Side of the triangle that is perpendicular to the height. forms a right angle	height height base base height hot base
Area of a Triangle	$A = \frac{1}{2}bh$	A: Area also b: base $A = \frac{bh}{2}$ h: height

For #1-3: Find the area of each triangle.

2)

3)

You try #4 - 6! Find the area of each triangle.

5)

6)

When it is more difficult to identify the base and height of a triangle: consider using the Pythagorean Theorem, a triple, or a special right triangle to find the missing side you need.

For #7-10: Find the area of each triangle. If needed, simplify radical answers.

$$=\frac{1}{2}(144\sqrt{3})=72\sqrt{3}$$

$$h = 12$$

$$5^{2}+x^{2}=13^{2}$$
 $\frac{1}{2}(5)(12)=$

x=12

$$\begin{array}{c|c}
10) & b = 18 \\
 & h = 18 \\
\hline
 & 18 \\$$

$$\frac{1}{2}(18)(18) = 162$$

You try #11 - 13! Find the area of each triangle. If needed, simplify radical answers.

11)

12)

13)

$$A = \frac{1}{2}(8)(8\sqrt{3})$$

= (12)(4)= 24

14) A triangle has an area of $40 in^2$. If the height of the triangle is 10 in, what is the length of the base of the triangle?

- A) 4 in
- B) 30 in
- C) 2 in
- (D))8 in

12 bh = 40 in2

Geometry

Ch. 8 Notes: Area

DRHS

			1/0 =
Rad	ius	of	a
C	irc	le	1

The radius of a circle connects the Center of the circle and a point on the circle.

Diameter of a Circle

The diameter of a circle is a segment passing through the <u>Center</u> of the circle with endpoints on the circle.

d=2r radius is half of diameter r = radius T = pi

Area of a Circle

 $A = \pi r^2$

TT ~ 3.14...

For #15 - 17: Find the area of each circle in the requested form.

15) In terms of π .

16) Round to one decimal.

17) In terms of π .

You try #18 - 19! Find the area of each circle in the requested form.

18) Round to one decimal.

19) In terms of π .

20) A circle has area of 36π cm². Find the length of the radius. Also, what is the length of the

diameter?

 $d = 6cm \times 2$ d = 12cm

8.2 Notes: Area of Quadrilaterals

Objectives:

- Students will be able to identify quadrilaterals by their names.
- Students will be able to find the area of common quadrilaterals.

Do you know the names of quadrilaterals (4-sided figures)? Write the name, in the box, of each shape. Choose from: square, rectangle, parallelogram, rhombus, kite, and trapezoid.

Area of a Rectangle	A = bh or $A = lwNote: opposite sides are congruent.$	b: base h: height l: length w: width
Area of a Square	$A = bh$ or $A = s^2$ Note: all sides are congruent.	b: base h: height s S: side
Area of a Parallelogram	A = bh Note: opposite sides are congruent.	b: base h: height bases are the same length

Geometry

Ch. 8 Notes: Area

DRHS

For #1-3: Find the area of each quadrilateral. Identify the name of each shape, as well.

1)

Rectaugle

You try #4-6! Find the area of each quadrilateral. Identify the name of each shape, as well.

4)

Parallelogram

5)

Rectangle

$$A = (21)(3)$$

= 63 ft^3

Square
$$A = (2\sqrt{3})^{2}$$

$$= (2\sqrt{3})(2\sqrt{3})$$

$$= 4 \cdot 3 = 12 \text{ cm}^{2}$$

$$=4.3=12cm$$

7) The area of a square is 50 ft^2 . Find the length of one side, rounded to one decimal place.

$$S = \sqrt{50}$$

$$S = 7.1$$

Challenge! 8) Find the area of the parallelogram shown. Simplify radical answers.

Geometry

Ch. 8 Notes: Area

DRHS

Area	of	a
Rhon	nbı	18

$$A = \frac{1}{2}d_1 \cdot d_2$$

Area of a Kite

$$A = \frac{1}{2}d_1 \cdot d_2$$

$$A = \frac{1}{2}d_1 \cdot d_2$$

$$d_1 = d$$
 in a general $A = \frac{1}{2}d_1d_2$
 $d_2 = d$ in a general 2

Area of a **Trapezoid**

$$A = \frac{1}{2}h(b_1 + b_2)$$

Note: bases are the parallel sides

For #9-11: Find the area of each quadrilateral. Identify the name of each shape, as well.

9)

10)

11)

$$A = \frac{1}{2}(10)(8)$$

You try #12 - 14! Find the area of each quadrilateral. Identify the name of each shape, as well.

12)

13)

$$A = \frac{1}{2}(12)(17)$$

$$A = \frac{1}{2}(16)(30)$$

15) A rhombus has an area of $28 ft^2$. If the measure of one diagonal is 16 ft, then what is the measure of the other diagonal?

$$A = \frac{1}{2} (d_1)(d_2) \qquad d_1 = 16 ft.$$

$$28 = \frac{1}{2} (16)(d_2)$$

$$\frac{28}{8} = \frac{8 d_2}{8}$$

$$d_2 = \frac{28}{8} = 3.5$$

16) Challenge! Find the area of the kite shown

8.3 Notes: Area of Regular Polygons

Objectives:

- Students will be able to name regular polygons by the sides.
- Students will be able to find the area of a regular polygon.

Exploration: Consider the triangle shown.

A. Find the area of the triangle. $A = \frac{1}{2}bh$

$$A = \frac{1}{2}(10)(5\sqrt{8})$$

$$= 25\sqrt{3} \approx 43.3$$

B. Imagine you had six of these exact same triangles. What would the combined area of all six triangles be?

$$6(25\sqrt{3}) = 150\sqrt{3} \approx 259.8$$

C. We could rearrange these triangles to form a hexagon (six-sided figure What would the area of this hexagon be?

$$6(25\sqrt{3}) = 150\sqrt{3}$$
 or 259.8

5 sides

A polygon is a flat - sided 2D figure made of Straight edges.

Polygons are named by the number of sides.

3 sides

4 sides

For #1-8: What is the name of a polygon with the number of specified sides? Try to do this without looking at the previous page.

1) 8 sides

ootogon

2) 5 sides

pentagon

3) 9 sides

4) 4 sides

quadrilateral

- 5) 10 sides
- 6) 7 sides

7) 3 sides

8) 12 sides

decagon

- heptagon
- triangle

nonagon

Dodecagon

Regular Polygon

A regular polygon has all sides that are equal, and all angles that are equa

In other words, a regular polygon is both equilateral and equiangular.

To find the area of a regular polygon, there are 2 methods.

Option 1: Find the area of one triangle and multiply it by the number of Sides of the polygon.

Area of a Regular Polygon

Option 2: Use the formula:

$$A = \frac{1}{2}aP$$

Where.

a is a pothern P is Perimeter

A quadrilateral is regular. What is a common name for this shape?

Square

A triangular shape is regular. What is a common name for this shape?

equilateral triangle $A = \frac{1}{2}aP$

$$A = \frac{1}{2}aP$$

a portion of any regular n-gon

apothem - distance from center of shape to

the middle of one edge

For #9-11: Find the area of each regular polygon if the area of the shaded region is given.

9) 15 in^2

 $10) 40 \ mm^2$

You try #12 – 13! Find the area of each regular polygon if the area of the shaded region is given.

12) $120 \ mm^2$

13) 11 ft^2

For #14-16: Find the area of each regular polygon.

$$a=10 \text{ cm}$$
 $\frac{1}{2}(10 \text{ cm})(70 \text{ cm})$
 $P=(14 \text{ cm})(5)=70 \text{ cm}^2$
 $a=7$

16) The perimeter is 30 in. A= 2 (7.8) (43.8)

You try #17-18! Find the area of each regular polygon.

17)

18) The perimeter is 65 in.

19) A regular decagon has one side of 12 inches and the apothem is 9 inches. Find the area of the regular decagon.

$$a = 9 \text{ in}$$
 $P = (12 \text{ in})(10) = 444 \text{ in}$
 $\frac{1}{2}(9)(120) = 540 \text{ in}^2$

20) Challenge! Find the area of the regular hexagon shown. Hint: Use the special right triangle shown to find the length of one side of the hexagon.

$$a = 4\sqrt{3}$$

 $P = 8(6 \text{ sides}) = 48$
 $\frac{1}{2}(4\sqrt{3})(48) = 96\sqrt{3}$
 ≈ 166.28

