
A STAR IS BORN – STAGES COMMON TO ALL STARS

All stars start as a **nebula**. A **nebula** is a large cloud of gas and dust.

Gravity can pull some of the gas and dust in a nebula together. The contracting cloud is then called a **protostar**. A protostar is the earliest stage of a star's life. A **star is born when the gas and dust from a nebula become so hot that nuclear fusion starts.** Once a star has "turned on" it is

(Not drawn to scale)

known as a main sequence star. When a main sequence star begins to run out of hydrogen fuel, the star becomes a red giant o red super giant.

THE DEATH OF A LOW OR MEDIUM MASS STAR

After a low or medium mass or star has become a red giant the outer parts grow bigger and drift into space, forming a cloud of gas called a **planetary nebula**. The blue-white hot core of the star that is left behind cools and becomes a **white dwarf**. The white dwarf eventually runs out of fuel and dies as a **black dwarf**.

THE DEATH OF A HIGH MASS STAR

A dying red super giant star can suddenly explode. The explosion is called a **supernova**. After the star explodes, some of the materials from the star are left behind. This material may form a neutron star. **Neutron stars** are the remains of high-mass stars. The most massive stars become **black holes** when they die. After a large mass star explodes, a large amount of mass may remain. The gravity of the mass is so strong that gas is pulled inward, pulling more gas into a smaller and smaller space. Eventually, the gravity becomes so strong that nothing can escape, not even light.

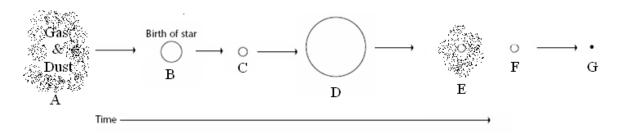
Question Sheet

Just like living things and humans, stars have a life cycle, which consists of birth, growth, development, middle age, old age, and death. The life cycle of a star spans over billions of years.

Section One - Sequencing

The sta	ages below are not in the right order. Number the stages in the correct order.
	The star begins to run out of fuel and expands into a red giant or red super giant .
	Stars start out as diffused clouds of gas and dust drifting through space. A single one of these clouds is called a nebula
	What happens next depends on the mass of the star.
	Heat and pressure build in the core of the protostar until nuclear fusion takes place.
	The force of gravity pulls a nebula together forming clumps called protostars .
	Hydrogen atoms are fused together generating an enormous amount of energy igniting the star causing it to shine.

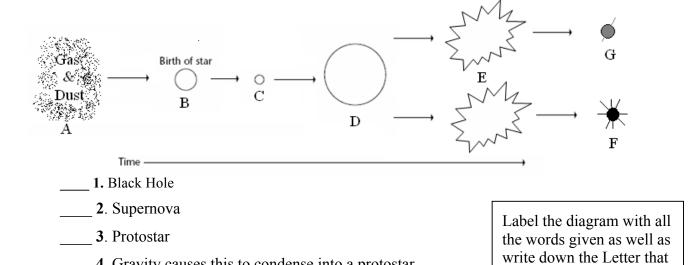
Section Two - Vocabulary


black hole

Match the word on the left with the definition on the right.

black dwarf
 white dwarf
 g. a red super giant star explodes
 nebula
 c. what a medium-mass star becomes at the end of its life
 protostar
 b. a large cloud of gas or dust in space
 supernova
 a. exerts such a strong gravitational pull that no light escapes
 neutron star
 d. the earliest stage of a star 's life

f. the remains of a high mass star


Section Three – Understanding Main Ideas - Low Mass Star

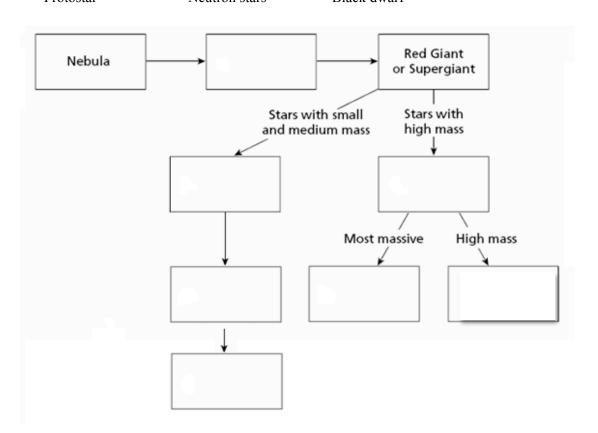
1. Red giant
 2. Where fusion begins
 _3. Nebula
4. Black hole
5. The stage the sun is in
 6. White dwarf
7. Planetary Nebula

Label the diagram with all the words given as well as write down the Letter that matches each object.

Section Four - Understanding Main Ideas - High Mass Star

matches each object.

4. Gravity causes this to condense into a protostar


_____5. Main sequence star

_____6. When a star begins to run out of fuel and grows larger

7. Neutron star

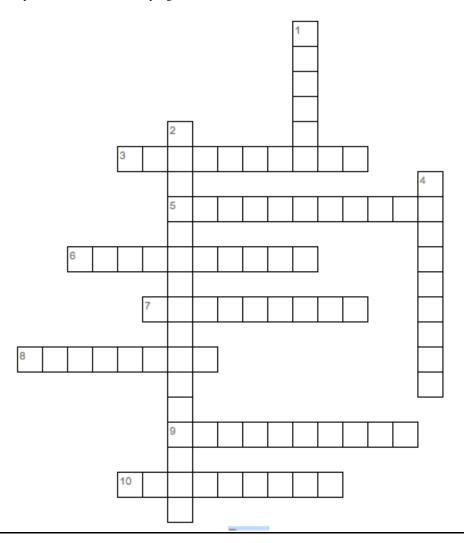
<u>Section Five – Graphic Organizer – Putting it all Together</u>

Black hole Supernova White dwarf Planetary nebula
Protostar Neutron stars Black dwarf

Av	ick hole erage utron star	Massive Nebulae	White dwarf Super-giant	Supernova Planetary Nebula	
1.	They are pu	lled together by	gravity into a spi	m which a star first forms. nning disc. The center of ecome a system of	
2.	much as thr	ee times the ma	ass of our sun as	tars. They grow to as they lose the nuclear fuel expands as the core	
3. or		form either an	star t	hat is about the size of our	Sun
		stay in this per		imes as big as our Sun! eir lives and they convert neat and light.	
a r ce	ed supergianter of th	int's core collap e star overcome	ses in on itself. • the gravitationa	is resulted where the electrical forces at the pull and create a massive the red supergiant.	
5.		ayers of a red g		ing until they eventually dri	ft
6.		much smaller _	_	ar drift away and the star It has now run out of	
7.	This star is	very small and	tremendously de	nse and marks the end of t	he
		t 1.4 times the r		etic field, a very fast spin - it is called a	_
8. wh	If the star is ich is so der	very massive or use that not eve	r big enough, a _ n light can escap	is forr e its gravitational pull!	ned,

Section 7 Crossword Puzzle on the Life Cycle of Stars

Across


- a white dwarf that has cooled down in
- 3 temperature; is invisible because it no longer emits light
- one of the endings of a star that has a mass 4-8 times greater than our Sun; are very dense this is what a low or medium life star will
- become later in its life; typically have the same mass as our Sun, but only a bit larger than the
- the explosion of a star when it has reached the 7 end of its lifetime; are no longer stars, and are
 - the dying stage of a star; they become larger

seen as bright points of light in the sky

- 8 and this color due to the decrease in temperature
- burn up their fuel more quickly than regular
- 9 stars; soon all fuels will run out and the core will collapse
- 10 places in space so strong that not even light can escape; may occur when a star is dying

Down

- this may be the beginning or the end of a star's life; a 1 cloud that is made up of dust, helium and hydrogen, and plasma
- 2 this is what 90% of stars in the sky are; they fall out of balance when all the fuel has been used up
- this is the starting point of a star's birth, lasting about
- 4 100,000 years; mainly made of helium and hydrogen particles, with a relatively low temperature

