First Grade Unit 8: Changes, Changes

Big Conceptual Idea: K-5 Progression on Counting and Cardinality and Operations and Algebraic Thinking (pp. 12-17), K-5 Progression on Number and Operations in Base Ten (pp. 6-7), K-6 Progression on Measurement and Data (Measurement Part) (pp. 8-11).

Throughout the unit the Math Practices are introduced and used. Find student friendly posters here.

Links might require you being logged into your Bridges Educator Site. If the link does not work for you, copy and paste the http:// address into a browser.

Mathematical Background: Read Bridges Unit Overview pages (pp. i-xii).

Unit Essential Question: How can time and objects be measured and compared?

Instructional note:

The Big Idea for Unit 8 brings about the idea that our daily lives and things in it such as time and objects can be measured. The idea is that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities, thus continuing the idea we’ve worked on throughout the year, numbers and their relationships to one another. The unit brings to life Problem Based Learning, and Teaching Through Problem Solving. “Doing mathematics in classrooms should closely model the act of doing mathematics in the real world” (Van de Walle, Karp, Bay-Williams, 2013).

Linear measurement is one of the 4 critical content areas as identified in the standards (NVACS, 2010, p. 13). The progression documents state, “The general reasoning processes of seriation, conservation (of length and number) and classification predict success in early childhood as well as later schooling” (K-6 Progression on Measurement and Data (Measurement Part), p. 8). Research has found (through longitudinal studies) student success in early childhood with number and measurement as indicators for academic success in mathematics and reading later in life (Duncan et al., 2007; Claessens and Duncan, 2009). Therefore, providing ample opportunities for students to experience and deepen these mathematical ideas will be incredibly beneficial. “Data from international studies consistently indicate that children in the United States are weaker in the area of measurement than any other topic” (Van de Walle, Karp, Lovin, Bay-Williams, 2014, p. 269). Measurement is prevalent in our daily lives, as well as embedded in many other strands of mathematics, science, social studies, art and music.

Unit 8 provides great opportunities for students to solidify their understanding of linear measurement, using unifix cubes as a tool. While each cube is a standard (the same length) measure, students are not using measuring tools such as rulers at this time (this is a second grade standard). To attend to the mathematics intended, focus on the idea of comparing lengths. Transivity should be explicitly discussed (the idea, not the actual word). For example, if the table is longer than the rug, and the rug is longer than the book, then logically the table is longer than the book too (K-6 Progression on Measurement and Data (Measurement Part), p. 8). The practice of comparing lengths connects the act of computing the difference between quantities, thus continuing the work of subtraction with 2 digit and 1 digit numbers.

The Big Idea that the size of the iterated unit matters (an inverse relationship between unit size and unit count) when measuring the length of an object, is difficult for students to grapple with. For example, understanding that using unifix cubes will result in a larger quantity for the length of a table, than using unsharpened pencils which will result in a smaller number. Students need to experience and explore this idea. The K-6 Progression on Measurement and Data (Measurement Part), states that some students might be tempted to try to measure using similar; yet not exactly the same items, such as large and smaller paper clips (p. 9). Children might not notice or understand that when using nonstandard units the unit must be the same size. Thus, if we decide to use a child’s length to measure the room we must stay with that same child and iterate that child's length over and over, instead of using multiple children and having them lay across the room. A worthy discussion is that, when measuring, the unit needs to stay the same. A literature connection to support this is “How Big is a Foot” by Rolf Myller or Super Fab Lab! Nonstandard Measurement- Sid The Science Kid- The Jim Henson Company.

Another idea to explore is seriation, ordering a set of objects by length. At first, students might struggle with ordering a large set (more than 6 objects) if the lengths vary by slight differences. Scaffold this by using smaller sets, and/or having items with larger differences, and slowly build to more items in a set and smaller differences (K-6 Progression on Measurement and Data (Measurement Part), p. 8).
Many standards are expected to be secure by the end of this unit. Specifically, 1.NBT.3 (comparison of numbers) 1.NBT.5 (Mentally find 10 more or less) 1.MD.1 (order three objects by length), 1.MD.2 (length of object), 1.MD.4 (Data) (NVACS, 2010).

Essential Academic Vocabulary

New Academic Vocabulary:
Use these words consistently during instruction.
*a Word Resource Card is available

<table>
<thead>
<tr>
<th>New Academic Vocabulary</th>
<th>Review Vocabulary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour (hr.)*</td>
<td>Add*</td>
</tr>
<tr>
<td>Minute (min.)*</td>
<td>Less than*</td>
</tr>
<tr>
<td>Second (sec.)*</td>
<td>Clock</td>
</tr>
<tr>
<td></td>
<td>Long/longer/longest*</td>
</tr>
<tr>
<td></td>
<td>Compare*</td>
</tr>
<tr>
<td></td>
<td>Lowest</td>
</tr>
<tr>
<td></td>
<td>Count*</td>
</tr>
<tr>
<td></td>
<td>Measure</td>
</tr>
<tr>
<td></td>
<td>Cube*</td>
</tr>
<tr>
<td></td>
<td>More than</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td>Number line*</td>
</tr>
<tr>
<td></td>
<td>Difference*</td>
</tr>
<tr>
<td></td>
<td>Ones*</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td>Parallel</td>
</tr>
<tr>
<td></td>
<td>Double</td>
</tr>
<tr>
<td></td>
<td>Pattern*</td>
</tr>
<tr>
<td></td>
<td>Edge*</td>
</tr>
<tr>
<td></td>
<td>Rectangle*</td>
</tr>
<tr>
<td></td>
<td>Equal*</td>
</tr>
<tr>
<td></td>
<td>Short/shorter/shortest*</td>
</tr>
<tr>
<td></td>
<td>Fives</td>
</tr>
<tr>
<td></td>
<td>Subtract*</td>
</tr>
<tr>
<td></td>
<td>Graph</td>
</tr>
<tr>
<td></td>
<td>Subtraction</td>
</tr>
<tr>
<td></td>
<td>Greater than*</td>
</tr>
<tr>
<td></td>
<td>Sum or Total*</td>
</tr>
<tr>
<td></td>
<td>Group/groups</td>
</tr>
<tr>
<td></td>
<td>T- Chart</td>
</tr>
<tr>
<td></td>
<td>Half*</td>
</tr>
<tr>
<td></td>
<td>Tally marks</td>
</tr>
<tr>
<td></td>
<td>Hundreds*</td>
</tr>
<tr>
<td></td>
<td>Tens*</td>
</tr>
<tr>
<td></td>
<td>Length*</td>
</tr>
<tr>
<td></td>
<td>Weight*</td>
</tr>
</tbody>
</table>

Review Vocabulary:
(Vocabulary taught prior grades or units)

Additional terminology that students might need support with: change, circumference, clock face, day, fast, fold, left side, location, minus, minute hand, order, plus, range, right side, rule, second hand, slow, sudden, time, strategies, year

Standards listed in **bold** indicate a focus of the lesson.

<table>
<thead>
<tr>
<th>NVACS (Content and Practices)</th>
<th>Big Idea</th>
<th>Mathematical Development</th>
<th>Instructional Clarifications & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1- Session 1: Time Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.NBT.1</td>
<td></td>
<td></td>
<td>Instructional NOTE:</td>
</tr>
<tr>
<td>MP.4</td>
<td></td>
<td></td>
<td>• Send home the Family Letter found here.</td>
</tr>
<tr>
<td>MP.7</td>
<td></td>
<td></td>
<td>• Measuring time relies on students engaging in experiences with the measurement. “Time is different from most other attributes that are commonly measured in school because it cannot be seen or felt and because it is more difficult for children to comprehend units of time or how those units are matched against a given time period or duration. As with other attributes, for children to adequately understand the attribute of time, they should make comparisons of events that have different durations.” (Van de Walle, et al., 2014, pp. 286-287).</td>
</tr>
<tr>
<td>Securing the Big Idea: Students will deepen their understanding of the relationships between numbers through work with measurement units. Time can be measured and units of time can be compared.</td>
<td></td>
<td></td>
<td>• The activity of building with math materials is intended to engage students in a familiar activity while focusing on the passage of time. It could be any activity that doesn’t require a huge cognitive demand. Remember the point is for students to be thinking about the passage of time, not to be focused on the actual activity of choice.</td>
</tr>
<tr>
<td>Instructional NOTE:</td>
<td></td>
<td></td>
<td>Enrichment: See the Extensions activities in the margin (p. 7).</td>
</tr>
<tr>
<td>Child Watching:</td>
<td></td>
<td></td>
<td>• Observe for students using appropriate vocabulary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Observe for students making connections to their daily lives.</td>
</tr>
</tbody>
</table>

Module 1- Session 2: A Second, A Minute, or An Hour

<table>
<thead>
<tr>
<th>NVACS (Content and Practices)</th>
<th>Big Idea</th>
<th>Mathematical Development</th>
<th>Instructional Clarifications & Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.1</td>
<td></td>
<td></td>
<td>Instructional NOTE:</td>
</tr>
<tr>
<td>1.MD.3</td>
<td></td>
<td></td>
<td>• Kinder standards do not call for any work to be done with time. In first grade Number Corner, students will have been exposed to time, analogue/digital clocks, and telling time to the half hour</td>
</tr>
<tr>
<td>MP.4</td>
<td></td>
<td></td>
<td>• There is a blog titled Finish Strong & Carry On suggested on the Educator Site with ideas for Unit 8. Find it on the Implementation tab then search for the title in the search bar, or copy and paste the link into your browser.</td>
</tr>
<tr>
<td>MP.5</td>
<td></td>
<td></td>
<td>https://bridges.mathlearningcenter.org/implementation/blog/finish-strong-carry</td>
</tr>
<tr>
<td>MP.7</td>
<td></td>
<td></td>
<td>-continues on next page-</td>
</tr>
<tr>
<td>Module 1- Session 3: How Long Does it Take?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Securing the Big Idea:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students will deepen their understanding of the relationships between numbers through work with measurement units. Time can be measured and units of time can be compared.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Watching:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Observe for students using appropriate vocabulary.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Observe for students making connections to their daily lives.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module 1- Session 4: An Hour or Bust!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Prior Learning:</td>
</tr>
<tr>
<td>1.MD.4</td>
</tr>
<tr>
<td>MP.4</td>
</tr>
<tr>
<td>Securing the Big Idea:</td>
</tr>
<tr>
<td>Students will deepen their understanding of the relationships between numbers through work with measurement units. Time can be measured and units of time can be compared.</td>
</tr>
<tr>
<td>Instructional NOTE:</td>
</tr>
<tr>
<td>• Measuring time relies on students engaging in experiences with measurement. “Time is different from most other attributes that are commonly measured in school because it cannot be seen or felt and because it is more difficult for children to comprehend units of time or how those units are matched against a given time period or duration. As with other attributes, for children to adequately understand the attribute of time. They should make comparisons of events that have different durations.” (Van de Walle, et al., 2014, pp. 286-287).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module 1- Session 5: Introducing Work Place 8A An Hour or Bust!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Prior Learning:</td>
</tr>
<tr>
<td>1.OA.8</td>
</tr>
<tr>
<td>1.NBT.1</td>
</tr>
<tr>
<td>1.NBT.3</td>
</tr>
<tr>
<td>1.NBT.4</td>
</tr>
<tr>
<td>1.G.3</td>
</tr>
<tr>
<td>Securing the Big Idea:</td>
</tr>
<tr>
<td>Students will deepen their understanding of the relationships between numbers through work with measurement units. Time can be measured and units of time can be compared.</td>
</tr>
<tr>
<td>Instructional NOTE:</td>
</tr>
<tr>
<td>• See the online digital tools for the Work Place. Copy and paste link into your browser https://bridges.mathlearningcenter.org/digital-materials/session-4-hour-or-bust</td>
</tr>
<tr>
<td>Enrichment:</td>
</tr>
<tr>
<td>See the Game Variations on Work Place Instructions (p. T3)</td>
</tr>
</tbody>
</table>

| Child Watching: |
| • Observe for students who are using strategies to mentally add the numbers. |
| • Observe for students using the commutative property, and changing the order of the numbers to create easier to add combinations. |
Module 2- Session 1: Grandma’s Picnic Basket

1.OA.1
- 1.OA.6: Using strategies to add and subtract within 20.

1.OA.6
- Students will have spent time working on knowledge of doubles to develop their reasoning strategies.

1.NBT.4

1.OA.4
- Students will have spent time working on knowledge of doubles to develop their reasoning strategies. They will also rely on their work adding and subtracting 1 and 2 from a number.

Developing the Big Idea:
Students will deepen their understanding of the relationships between numbers as they work towards developing the Big Idea of algebraic functions. This supports the Big Idea that place value patterns occur, and that quantities can be compared. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- Read the Math Practices in Action in the margin (p. 8)
- In the Bridges Overview for this unit you will find the Algebra Connections in This Unit (p. vi). Consider revisiting this as you launch into work with the big idea of algebraic functions.

Enrichment: Allow students to challenge themselves with a larger number to double, or to make multiple pages for the book.

Child Watching:
- Observe for students identifying and making use of the structures and patterns they see on the T-chart.

Module 2- Session 2: The Change Box, Day 1

1.OA.5
- 1.OA.6: Using strategies to add and subtract within 20.

1.OA.6
- Students will have spent time working on knowledge of doubles to develop their reasoning strategies. They will also rely on their work adding and subtracting 1 and 2 from a number.

1.G.3

MP.2
- MP.4
- MP.7
- MP.8

Developing the Big Idea:
Students will deepen their understanding of the relationships between numbers as they work towards developing the Big Idea of algebraic functions. This supports the Big Idea that place value patterns occur, and that quantities can be compared. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- Continuously reinforce strategies that involve adding and subtracting.
- The Math Practices 7 & 8 both begin with “look for” which implies that “children who are mathematically proficient pay attention to patterns as they do mathematics.” These lessons provide opportunities for students to work on these two math practices. “Children should be engaged in looking for, describing, and extending patterns to help them develop the skills to look for structure and express regularity in all mathematical situations.” (Van de Walle, et al., 2014, p. 243).
- See the blog titled The Ins & Outs of the Change Box on the Educator site for step by step directions and picture support to create your change box. You can search for it under the implementation tab, or copy and paste this link. https://bridges.mathlearningcenter.org/implementation/blog/ins-outs-change-box

Enrichment: See Step 10 (p.16)

Child Watching:
- Observe for students identifying and making use of the structures and patterns they see on the T-chart.

Module 2- Session 3: The Change Box, Day 2

1.OA.6
- 1.OA.6: Using strategies to add and subtract within 20.

MP.2
- MP.7

Developing the Big Idea:
Students will deepen their understanding of the relationships between numbers as they work towards developing the Big Idea of algebraic functions. This supports the Big Idea that place value patterns occur, and that quantities can be compared. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- Continuously reinforce strategies that involve adding and subtracting.
- The Math Practices 7 & 8 both begin with “look for” which implies that “children who are mathematically proficient pay attention to patterns as they do mathematics.” These lessons provide opportunities for students to work on these two math practices. “Children should be engaged in looking for, describing, and extending patterns to help them develop the skills to look for structure and express regularity in all mathematical situations.” (Van de Walle, et al., 2014, p. 243).

Enrichment: See Steps 9 & 11 (p. 20), see Extensions in the margin (p. 20)

Child Watching:
- Observe for students identifying and making use of the structures and patterns they see on the T-chart.

Module 2- Session 4: Introducing Work Place 8B Change Cards

1.NBT.4
- 1.OA.6: Using strategies to add and subtract within 20.

1.NBT.5
- 1.NBT.6

MP.2
- MP.7

Access Prior Learning:
- Students will have spent time working on knowledge of doubles to develop their reasoning strategies. They will also rely on their work adding and subtracting 1 and 2 from a number.

Instructional NOTE:
- The assessment binder under the Bridges Unit Assessment Tab provides the scoring guide for the for Time & Change Checkpoint (p. 84) It can also be downloaded from the site and scores entered digitally to create a color coded spreadsheet. https://bridges.mathlearningcenter.org/implementation See the right hand side where it says, “assessment tools.”

-continues on next page-
Module 3- Session 1: Folding & Flying Paper Gliders

1.G.3
MP.1
MP.6

Access Prior Learning:
- K.G.6: Compose simple shapes to form larger shapes.
- 1.G.3: Unit 5 provided opportunities for students to secure this standard

Developing the Big Idea:
This session sets the stage for developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- Read the Math Practices in Action in the margin (p. 6).
- Consider making cross content connections with the Next Generation Science Standards for this module.

Enrichment:
Child Watching:
- Observe for students struggling with creating their glider and support as needed.

Module 3- Session 2: Constructing Runways

1.NBT.2
1.NBT.5
1.MD.2
MP.1
MP.7

Access Prior Learning:
- K.MD.2: Directly compare two objects with a measurable attribute in common.
- Students have experience with measuring from the Penguin modules in Units 4 and 6.

Developing the Big Idea:
Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- Although the runway construction with unifix cubes is a great idea for measuring distances, consider passing the task of devising a plan to measure the distance of flight to the students (thus moving toward DOK 4 thinking). Students might come up with unifix cubes on their own; however, leaving this open-ended can create opportunities for deeper growth and common measurement misconceptions to present themselves.
- Consider starting with an open-ended opportunity for measuring, and using an A/D/E day to do this, following with this session after.
- Having students cutting a length of string to represent the distance, then spending time measuring the string might create opportunities to compare distances and measuring.

Enrichment: See the Instructional Note.
Child Watching: Observe for student misconceptions about measurement including:
- Leaving gaps between units
- Having overlaps (if using tools like popsicle sticks)
- Not starting and ending at the object’s beginning or ending
- Not attending to the linear aspect (following a curved shape of flight pattern)
- Assuming an item is longer than another same-sized item if the measuring unit choice resulted in a larger quantity.
- Comparing measurements that were measured using different-sized units (popsicle sticks versus unifix cubes)

Module 3- Session 3: Gliders in Flight

1.NBT.1
1.NBT.3
1.NBT.4
1.MD.1
1.MD.2
MP.1
MP.2

Access Prior Learning:
- K.MD.2: Directly compare two objects with a measurable attribute in common.
- Students have experience with measuring from the Penguin modules in Units 4 and 6.

Developing the Big Idea:
Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- If teachers choose to let students design their own method for measuring, students might have discovered that, in order to compare distances with each other a common unit of measure must be used, which is better place for the unifix cube runways to come in.

Enrichment: Students could begin engineering different paper airplanes and determining which design of airplanes flies farthest.

-continues on next page-
Module 3- Session 4: Analyzing the Flight Data

Access Prior Learning:
- 1.NBT.1
- 1.NBT.3
- 1.NBT.4
- 1.MD.4
- MP.1
- MP.2

Instructional NOTE:
- Read the *Math Practices in Action* in the margin (p. 22).

Enrichment:
- See Step 10 or ask students to ask and answer their own questions about the data (p. 23).

Child Watching:
- Observe for student strategies when engaging in addition and subtraction as they compare data points.

Developing the Big Idea:
Students work on developing the idea that *distance is measured as a series of iterated units*. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Module 3- Session 5: More Glider Flights

Access Prior Learning:
- 1.NBT.1
- 1.NBT.3
- 1.NBT.4
- 1.MD.1
- 1.MD.2
- MP.1
- MP.2

Instructional NOTE:
- Students could begin engineering different paper airplanes and determining which design of airplanes flies farthest.

Child Watching:
- Observe for student misconceptions about measurement including:
 - Leaving gaps between units
 - Having overlaps (if using tools like popsicle sticks)
 - Not starting and ending at the object’s beginning or ending
 - Not attending to the linear aspect (following a curved shape of flight pattern)
 - Assuming an item is longer than another same-sized item if the measuring unit choice resulted in a larger quantity.
 - Comparing measurements that were measured using different-sized units (popsicle sticks versus unifix cubes)

Developing the Big Idea:
Students work on developing the idea that *distance is measured as a series of iterated units*. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Module 3- Session 6: Analyzing the Second Round of Flight Data

Access Prior Learning:
- 1.NBT.1
- 1.NBT.3
- 1.NBT.4
- 1.MD.4
- MP.1

Instructional NOTE:
- The *Assessment Binder* under the *Bridges Unit Assessment* tab provides the scoring guide for the *Unit 8 Assessment* (p. 91). It can also be downloaded from the site and scores entered digitally to create a color-coded spreadsheet.

Enrichment:
- See Step 11 (p. 24)
Module 4 - Session 1: Baby Lengths

<table>
<thead>
<tr>
<th>Access Prior Learning:</th>
<th>Instructional NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.NBT.1</td>
<td>• Attend to culturally responsive practices when planning for this module. In analyzing the make-up of your class, teachers will want to be aware of any students who might not have knowledge of their birth details, or family history. If that is the case, teachers can brainstorm with students’ ways to participate by using a baby’s length from another child.</td>
</tr>
<tr>
<td>1.NBT.3</td>
<td>• Read the Math Practices in Action in the margin (p. 4).</td>
</tr>
<tr>
<td>1.MD.1</td>
<td>• The Big Idea of transivity can be discussed during this session when ordering the lengths. If length A is bigger than B, and B is bigger than C, logically we can assume A is bigger than C too. Many students will at first need these items to be directly compared to grasp the understanding of this idea. Later, students will be able to engage in the process as a thought experiment visualizing the length attribute of each object and mentally comparing.</td>
</tr>
<tr>
<td>1.MD.2</td>
<td></td>
</tr>
<tr>
<td>MP.6</td>
<td></td>
</tr>
</tbody>
</table>

Securing the Big Idea:

Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Enrichment: See Extension in the margin (p. 6)

Child Watching: Observe for student misconceptions about measurement including:

- Leaving gaps between units
- Having overlaps (if using tools like popsicle sticks)
- Not starting and ending at the object’s beginning or ending
- Not attending to the linear aspect (following a curved shape of flight pattern)
- Assuming an item is longer than another same-sized item if the measuring unit choice resulted in a larger quantity.

Comparing measurements that were measured using different-sized units (popsicle sticks versus unifix cubes)

Module 4 - Session 2: How We Have Grown

<table>
<thead>
<tr>
<th>Access Prior Learning:</th>
<th>Instructional NOTE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.OA.3</td>
<td>• Read the Math Practices in Action in the margin (p. 11).</td>
</tr>
<tr>
<td>1.NBT.1</td>
<td></td>
</tr>
<tr>
<td>1.NBT.3</td>
<td></td>
</tr>
<tr>
<td>1.NBT.4</td>
<td></td>
</tr>
<tr>
<td>1.NBT.5</td>
<td></td>
</tr>
<tr>
<td>MP.1</td>
<td></td>
</tr>
<tr>
<td>MP.5</td>
<td></td>
</tr>
</tbody>
</table>

Securing the Big Idea:

Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Enrichment:

Child Watching: Observe for students’ strategies when adding and subtracting

- Observe for students’ written methods as they describe their strategies
- Continue to observe for measurement misconceptions as before
Module 4- Session 3: How Big is This Baby?

Access Prior Learning:
- K.MD.2: Directly compare two objects with a measurable attribute in common.
- K.MD.3: Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.
- Module 3 on Gliders

Securing the Big Idea:
Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- The Big Idea of indirect measurement is prevalent here when the baby leaves and students have just the string. Students are not making a direct comparison.

Enrichment:

Child Watching:
- Observe for student understandings about ordering lengths (seriation) and transivity.

Observe for student misconceptions about measurement including:
- Leaving gaps between units
- Having overlaps (if using tools like popsicle sticks)
- Not starting and ending at the object’s beginning or ending
- Not attending to the linear aspect (following a curved shape of flight pattern)
- Assuming an item is longer than another same-sized item if the measuring unit choice resulted in a larger quantity.
- Comparing measurements that were measured using different-sized units (popsicle sticks versus unifix cubes)

Module 4- Session 4: The Baby & Me

Access Prior Learning:
- K.MD.2: Directly compare two objects with a measurable attribute in common.
- K.MD.3: Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.
- Module 3 on Gliders
- Previous sessions

Securing the Big Idea:
Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- The Big Idea of comparing measurements that are not a typical straight length is prevalent here as students are unable make a direct comparison of the circumference of their heads. Students must transfer that measurement to the string and then compare the measurements.

Enrichment: See Step 11 (p. 20)

Child Watching:
- Observe for student strategies when engaging in addition and subtraction as they compare data points.
- Observe for student misconceptions about measurement as noted in previous session.

Module 4- Session 5: Time & Change

Supports K.MD
MP.4

Access Prior Learning:
- K.MD standards
- Previous sessions

Securing the Big Idea:
Students work on developing the idea that distance is measured as a series of iterated units. Different measurement units can be compared and so can quantities. This continues to develop students’ understanding of numbers and their relationships to one another.

Instructional NOTE:
- This lesson can provide opportunities for student reflection about their learning over time. This would be an opportunity to visit student math portfolios, if they have them, and add items to the gallery walk from their portfolios.

Enrichment:

Child Watching:
- Observe for students celebrating their learning and success!

References

